AD-AdlE 257

MISCELLANEOUS PAPER O-79-4

PRIMER ON COMPUTER GRAPHICS

PROGRAMMING
2 »
- b Ve 230 TECHNICAL
gg LIBRARY
' &
=T,
| % October 1979

Final Report

[Approved For Public Release; Distribution Unfimited

Prepared for Office, Chief of Engineers, U. S. Army
Washington, D. C. 20314

Under Contract No. DACW39-78-M-2676

Monitored by Automatic Data Processing Center
U. S. Army Engineer Waterways Experiment Station
P. O. Box 63, Vicksburg, Miss. 39180

80 4 4 048

Destroy this report when no longer needed. Do not return
it to the originator.

The findings in this report are not to be construed as an official
Department of the Army position unless so designated
by other authorized documents.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entsrad)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

Miscellaenous Paper 0-T9-k

4. TITLE (and Subtitia) S. TYPE OF REPORT & PERIOD COVERED

PRIMER ON COMPUTER GRAPHICS PROGRAMMING Final report
6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Contract No.
DACW39-T8-M-2676

9. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT, PROJECT TASK
AREA & WORK UNIT NUMBER

Westinghouse Word Processing Center
Pittsburgh, Pa. 15230

.

11. CONTROLLING OFFICE NAME ANO AODRESS 12. REPORT OATE
Office, Chief of Engineers, U. S. Army SCtObzzaiEZises
Washington, D. C. 2031k 261NUM

T4. MONITORING AGENCY NAME & AOORESS(ff different from Controlling Office) 1S. SECURITY CLASS. (of thie raport)

U. 8. Army Engineer Waterways Experiment Station Unclassified
Automatic Data Processing Center 15a. DECL ASSIFICATION/ DOWNGRADING
P. 0. Box 631, Vicksburg, Miss. 39180 SCHEOULE

16. OISTRIBUTION STATEMENT (of this Raport)

Approved for public release; distribution unlimited.

17. OISTRIBUTION STATEMENT (of the abatract sntersd in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WOROS (Continus on revarae aids if nacsssary end Identify by biock number)

Computer graphics
Graphics Compatibility System
Computer programming

20. ABSTRACT (Contious en reverss side ff necessary and identify by block number)

This report is a tutorial for learning graphics programming with the
Graphics Compatibility System (GCS). GCS is a collection of ANSI standard
FORTRAN subroutines invocable by a user's FORTRAN program. The report covers
GCS's capabilities. GCS can produce a simple line drawing or handle comprehen-
sive general purpose axis creation and automatic clipped; arc and conic gener-
ation; graphics input; secondary coordinate systems; multiple software charac-
ter fonts; data structures; segmentation; and color. The report addresses both
two- and three-dimensional graphics capability within GCS.

FORM
DD | jan 72 Y473 EDITION OF 1 NOV 65 1S OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Enterad)

PREFACE

This report is the result of work performed under Contract No.
DACW39-78-M-2676, dated 3 April 1978, between the U. 5. Army Engineer
Waterways Experiment Station (WES), Vicksburg, Miss., and the Westing-
house Word Processing Center, Pittsburgh, Pa. The work concerned
publishing a word processing version of the Primer on Computer Graphics
Programming. The original version of this primer was developed at the
U. S. Military Academy.

Contributors to the document were Dr. Richard Puk, Sandia Labora-
tories; Dr. Steve Orbon and Mr. Robert Bruns, Westinghouse; and Mr.
James M. Jones II, R&D Software Group, Automatic Data Processing (ADP)
Center, WES. The work was administered by the ADP Center, WES, as part
of Computer Technology-Engineering Software, Project No. LUAT62T25AT1,
and the Civil Works Computation and Analysis Project sponsored by the
Office, Chief of Engineers, p} S. Army (OCE). OCE points of contact
were Mr. Robert McMurrer (DAEN-DSE) and Messrs. Richard Malm and Harry
Hardin (DAEN-CWE-BA).

Mr. Jones monitored the contract under the general supervision of
Dr. N. Radhakrishnan, Special Technical Assistant to the Chief of the
ADP Center, WES, and Mr. D. L. Neumann, Chief of the ADP Center.

Directors of WES during the period of the contract and the prep-
aration of this report were COL J. L. Cannon, CE, and COL N. P. Conover,

CE. Technical Director was Mr. F. R. Brown.

PREFACE .

INTRODUCTION

CHAPTER I:
CHAPTER II:

CHAPTER III:

CHAPTER 1IV:
CHAPTER V:
CHAPTER VI:

CHAPTER VII:
CHAPTER VIII:

CHAPTER IX:
CHAPTER X:

CHAPTER XI:
APPENDIX A:
APPENDIX B:
APPENDIX C:
APPENDIX D:
APPENDIX E:
APPENDIX F:
APPENDIX G:

CONTENTS

IMPORTANT TECHNICAL CONCEPTS AND CONVENTIONS

GCS PROGRAMMING FUNDAMENTALS .
VIRTUAL AND DEVICE GRAPHICS .
ALPHANUMERIC OQUTPUT

GRAPHICAL AND ALPHANUMERIC INPUT

GCS UTILITY SUBROUTINES
HIGH LEVEL GRAPHICS .

COORDINATE SYSTEMS AND TRANSFORMATIONS .
THREE DIMENSTIONAL GRAPHICS .

GRAPHICAL, DATA STRUCTURE AND NAMING

PICTURE SEGMENTATION AND NAMING
ALPHABETICAL LISTING OF GCS SUBROUTINES
USET OPTIONS .

UPSET OPTIONS

GCS DEFAULT CONDITIONS .

USET OPTIONS BY CLASS

UQUERY OPTIONS .

GCS ERROR CODES

D-1
E-1
F-1
G-1

INTRODUCTION
THE GCS RESEARCH AND DEVELOPMENT PROJECT

The traditional forms of computer output — vast piles of densely printed computer list-
ings — often leave managers, engineers and students confused and frustrated. Often
the information one wants to know is somewhere in the computer output, but not in a
form wherein the user can find what he wants, understands, or can easily assimilate.

For years the computer field has looked forward to breaking this bottleneck in computer-
human communications by using pictures instead of printouts. The idea is not new. The
first stored-program, electronic computer ever designed had in its initial design an
oscilliscope which was supposed to give graphic displays of the solutions of the prob-
lems it was to solve. Working two-way man-to-computer-to-man graphic communica-
tions dates back at least 10-20 years to the early Cape Cod and SAGE Air Defense
Systems and lvan Sutherland's early SKETCHPAD system. Yet, even today, the amount
of graphic output that most computer users ever see is limited to a few crude barcharts of
graphs produced on computer printers, or possibly a pen-plot made with an
electromechanical plotter. Everyone knows about computer graphics — but very few
actually have it, and even fewer make good use of it in their normal day-to-day work.

Computer graphics has been too expensive. The hardware has been expensive but, far
worse than that, the software has been actrociously expensive. |t has been expensive
not only in initial cost, but also in its tendency to be both highly specialized and highly
machine-dependent. Only specially qualified assembly language programmers could
work on it and it would work on only one machine. Obviously there were exceptions to
this. Much of the great acceptance with pen-plotters received in recent years came from
the fact that they permitted the use of FORTRAN subroutines which could be used by
run-of-the-mill FORTRAN programmers to plot simple axes, graphs, etc. The morerecent
success of the TEKTRONIX storage tube terminals has also been greatly influenced by
the fact that reasonably good user-accessible software is available for such devices.

Today we are in a period of rapid improvement in availability of practical computer
graphics. Timesharing is bringing the computer out of the warrens of the computer
center and into the offices of engineers, managers, classrooms, academic buildings, and
even the dormitories of academia. Timesharing started out with printing terminals, like
the teletype but the era of timesharing graphics is fast approaching. LSt and MOS tech-
nology are making the minicomputer and even the microcomputer increasingly attrac-
tive. Minicomputer-based special purpose graphics systems are now very successfully
paving their own way in a number of tasks such as in the layout of electronic circuit
boards. Coupled with small mass storage devices such as discs, or even in some cases
cassettes, minicomputer-based graphics systems have considerable capability, in spite
of serious software limitations. Today they seem ready to burst out into widespread use.
Perhaps the most exciting possibility of all is the intelligent terminal connected by a
communications link to a timesharing or other large computer system. In such an
environment, the software advantages of the large system and the hardware advantages
of the small system can complement one another, and can — potentially at least — gain
the advantages of both.

But, enough of the past and the future. What can GCS offer today to the typical user —
e.g., a routine FORTRAN programmer at an instaliation which has a limited amount of
money to invest in graphics?

The USMA Graphics Compatibility System (GCS) is a FORTRAN-based computer
graphics system designed for interactive use on a wide variety of computer graphics ter-
minals. Due to its comprehensive and modular design, GCS provides a simplified easy-
to-learn and easy-to-use approach to computer graphics, while simultaneously provid-

ing a powerfull tool which the sophisticated programmer may use for demanding and
highly interactive graphical applications.

GCS provides compatibility at two distinct levels:
A. Cross-compatibility from one computer systems to another; and,
B. Cross-compatibility between computer graphics terminals.

Cross-compatibility from one computer to another has been achieved by writing all GCS
software in FORTRAN, with emphasis placed on strict adherence to the specifications
established by the American National Standards Institute (ANSI).

Cross-compatibility from one terminal to another has been achieved in a manner which
is completely transparent to the user. One need no longer be concerned about the prob-
lems of “tailoring” his programs for a given graphical device — GCS provides the max-
imum capabilities offered by the various terminals in order to satisfy the user's graphical
requirements. Device independence provides the user with the option of preparing and
debugging his graphics program on a terminal other than the type he may desire for final
output — a consideration of paramount importance for installations which may have a
limited number of graphical devices available at any given time.

It should be emphasized that GCS is not just another collection of unrelated graphics
subroutines — it is a unified system which provides the user with the flexibility to per-
form his tasks at any level of involvement that he desires. Because of this unique man/
software relationship, GCS can also be thought of as “user compatible,” and it is in this
last facet of compatibility that GCS unveils its true potential. Individuals who would nor-
mally dismiss graphics for their particular applications are now provided with an alterna-
tive. High-level, composite routines are provided to perform relatively complex but fre-
quently required tasks such as the preparation of complete graphs and histograms.
Flexibility and adaptability to the needs of the more sophisticated user are achieved by
allowing such a user to control the various GCS options which are present to standard
default conditions for the unsophisticated programmer. Users of all disciplines may feed
equally comfortable with GCS, since they are required to interact only at their particular
level of graphics involvement.

The GCS development was a response to a specific need. In the winter of 1871-72, it
was decided that the U.S. Military Academy would teach a series of courses to senior
R&D managers dealing with computer assisted design-engineering, with special
emphasis upon interactive computer graphics.

It was decided that the course would be heavily, hands-on oriented and that USMA
would demonstrate practical applications of graphics from each Math-Science-
Engineering academic department area, programmed by a faculty member from that
area It was also decided that these applications should be spread over at least four
types of graphics output:

1. Printer-plot graphics — both in batch mode and from a timeshare terminal.

2. Pen-plot graphics — both interactive and non-interactive.

3. Static or add-on CRT graphics — storage tube display.

4. Dynamic CRT graphics — refresh tube display.

The Army Material Command (AMC) was to supply adjunctive graphics equipment to add

to the existing USMA Academic Computer Center timesharing systems: USMA was to
provide the teaching faculty and develop both the educational software and the required

computer software; the US. Army Computer Systems Command was to provide a Liaison
Officer who would assist in the computer software development.

The course was to begin in July 1972. The new graphics equipment would not be availa-
ble until April or May. Terminal equipment would arrive so late that programs to run on
one type of graphics terminai might have to be checked out by testing it on another type
of terminal.

Tha academic department faculty members would not be available to work on the project
until the start of June. Most of them were reasonably competent FORTRAN programmers
with little, if any, prior experience with graphics — but most of them would have time to
take a 6-8 lesson course in graphics during their lunch periods once a week in the spring
semester.

In order to meet this near-impossible set of constraints, a system was devised which
could be both quickly and easily learned by faculty members with varied levels of
FORTRAN experience (and, in many cases, no FORTRAN experience) and could be built
and checked out in a tremendous hurry, using no more than one or two full-time pro-
grammers, with part-time assistance of half a dozen or so other programmers.

GCS (Version 1.0) was the response. Somehow it was developed in time. It sputtered,
wheezed, ran slowly, did not have very many sophisticated options, and had embedded
in it various pieces of proprietary software which were not releasable to others. It was
well accepted, however, by its users. It met the seminar requirements and was widely
used during the Academic Year 1972-73, with a great deal of useful feedback being
obtained. A year later, in the late spring of 1973, GCS version 2.0, rebuiit from the bottom
up, became operational. It still ran the same program, with occasional minor changes
suggested by users as human engineering improvements. It was faster, supported more
advanced options, was much more solid, and no longer contained even the most remote
trace of any proprietary software in its modules.

In October 1973, GCS had progressed to the stage that it was ready to release for field
testng by other agencies. As a result of this field testing, some interesting and valuable
suggestions were incorporated into GCS. In January 1975, the U.S. Military Academy
was no longer able to support GCS and the responsibility for maintenance, distribution,
and future development was transferred to the U.S. Army Corps of Engineers Waterways
Experiment Station.

CHAPTER |

IMPORTANT TECHNICAL CONCEPTS AND CONVENTIONS

In order to understand and use a system as powerful and versatile as GCS, the user
should be aware of certain basic technical concepts and conventions.

Relationship of GCS to FORTRAN

The Graphics Compatibility System (GCS) is a package of inter-related subroutines writ-
ten in ANSI FORTRAN. In order to produce graphics output,a FORTRAN program is writ-
ten to perform whatever computations and/or graphics manipulations are needed to pro-
duce the desired image: Embedded in the program are calls to GCS subroutines to han-
dle the graphic display and interaction, if relevant.

Under normal conditions, all input-output between the computer and graphics devices
such as plotters and terminals will be handled via calls to GCS routines, without
recourse to system dependent routines.

The programming conventions of GCS are identical to those of ANSI FORTRAN except
that the use of GCS creates additional reserved names. All GCS subroutines designed
for User use are FORTRAN subroutines beginning with the letter U. The GCS system
also includes additional internal subroutines not intended for availability to users which
always begin with the letters GCS. Thus the user, to avoid potential confusion and/or
conflict between his program and GCS, should avoid creating his own subroutines with
names beginning with either U or GCS.

All numbers used as calling parameters are passed to GCS as real numbers, even in
situations where they represent integers.

Graphics Status Area (GSA) - Preset Modes and Parameters

In order to keep continuous track of many items of information relevant to graphics
activities such as where the beam (or pen) is currently located, what portion of the
screen (or plotting area) is currently within limits and what portion is currently off limits
for drawing, what portion is within limits and what portion is off limits for textual material,
etc, a labelled COMMON area GSA is established. The GSA common block also keeps
track of the user’s current choice from among the list of available options which define or
mode of operation of the system. :

When one starts a GCS program, the user's startroutine (USTART) automatically sets all
options to a standard initial condition: rectangular coordinate system, absolute (rather
than relative or incremental), plotting angles to be measured in degrees, lines to be
drawn routinely as solid lines without special attributes, etc.

The following is a sample program which illustrates the use of the GCS package to pro-
duce graphics output.

DIMENSION X(2),Y(2)

A =75,

B =765

X(1) = 25.

Y(1) = 75.

X(2) = 75.

Y(2) = 25. COMMENTS

CALL USTART ‘A’

CALL UOUTLN ‘B’
CALL UMOVE (25,25) i€
CALL UPEN (A,B) ‘D’
CALL UMOVE (X(1),Y(1)) &
CALL USET (‘DASH) ‘F’
CALL UPEN (X(2),Y(2))
CALL UEND ‘G’
STOP
END

COMMENTS:

A: The first GCS call must be to USTART, a subroutine to initialize the status of the
system.

B: UOUTLN will be explained in Chapter Il

C: Alluser oriented GCS subroutines begin with the letter ‘U’ and have easy toremem-
ber names.

D: Simple pen movements, such as visible UPEN’s and invisible UMOVE’s, are depen-
dent upon the status of the system for their resulting actions.

E: All arguments to GCS subroutine calls are either real or character.

F: The status of the system can be modified, as in this case with USET, in order to

obtain a wide range of output types.

G: The last GCS call must be to UEND, a subroutine which performs any termination
activity.

GCS CONVENTIONS

Easy toremember English-language descriptions rather than arbitrary codes are used to
specify modes. For example, if one is in the preset condition and wishes to draw in polar
coordinates with angles measured in radians and lines drawn as vectors (solid lines with
arrowheads), one would merely use the following User mode-Setting commands:

CALL USET (‘POLAR)
CALL USET (‘RADIANS’)
CALL USET (‘VECTOR)

Torevert to drawing in rectangular coordinates with plain lines, the commands would be:

CALL USET (‘(RECTANGULAR')
CALL USET (‘LINE")

Furthermore, there are those modes which require an additional parameter to be associ-
ated with ‘hat particular mode. For example, the preset polynomial degree to which a set
of data can be fitted (using the subroutine ULSTSQ) is 5. If the user would prefer that his

data be fitted to a polynomial of degree 3, he would use the User Parameter Setting com-
mand:

CALL UPSET (‘POLYNOMIAL DEGREE’,3)

(before the call to ULSTSQ). To re-establish the original polynomial of degree 5, the
appropriate call would be:

CALL UPSET (‘POLYNOMIAL DEGREE',5)

The user need never be concerned with these modes of parameters unless the standard
values do not suit him. He can easily change them to values he wants. Then he can
forget all about them until he once again feels a need to change, or until the GSA is
reinitialized.

The underlying principle which permits the use of this option setting technique is the
fact that the GSA is in fact a table containing all of the options necessary to define an
environment in which graphics activities are performed. These elements are preset to
values which reflect the most commonly performed graphics operations. [n order to
make a particular graphics option, only one element of the table is altered.

It will be normal practice in this manual to spell out completely the USET or UPSET
option-names in full even if the name is very long, such as ‘DOUBLEARROW’ or
‘DASHEDLINE'. Doing this is good form and good self-documentation for programs. GCS
will. however, analyze only the first 4 characters in any option-name designator. If
misspellings, truncations or non-standard wording occurs, the corrupted version will be
fully acceptable to GCS provided that the first 4 characters of the character string are
accurate.

With this system of organization, the beginning user—or the infrequent user—is insu-
lated from the adverse effects which would tend to overwhelm the beginner in a system
designed to provide flexibility for advanced and sophisticated users.

The user need be aware of, and pay attention to, only those degrees of freedom which he
specifically wants to exploit in writing his program. GCS does not burden the user with
long, complicated calling-parameter lists and complicated arbitrary codes. It can use
short, easy-to-remember and easy-to-use commands convenient to both unsophisti-
cated and sophisticated users.

Information in This Manual and Information Excluded From It

Some idea of the scope and range of the subroutines and options most likely to be of
interest to the beginning user may be found in Appendices ‘A’ and ‘B'. Sophisticated
subroutines and options such as those involved in dealing with axis transformations,
storing, manipulating and editing pictorial data structures have been completely omitted
from this manual. Only a very limited subset of the most important and most frequently
used subroutines and options from these appendices will actually be described in detail
and discussed in this manual. For more complete programming information, see the sep-
arate '‘GCS Programmer Reference Manual'.

CHAPTER Il
GCS PROGRAMMING FUNDAMENTALS

Initialization
The first GCS statement in any program must be
CALL USTART

Its functions are many, varied and important. Some of them are:

A. It prepares the graphic terminal for plotting. In doing so, it clears the screen (or, in
the case of plotter, requests the attendant to place a fresh sheet of paper on the
plotbed), places the beam (or pan) in a standard position—coordinates (0,0) at the
lower left corner of the standard plotting area.

B. It sets all mode and parameter options at their standard default values.

in the standard default condition, the system is set to use Cartesian, absolute coordi-

nates and to draw solid lines in a large square area contained within the screen or plot-

ting bed of the graphics device. Itis preset to accept the values of 0. < X < 100. and 0.

< Y < 100. Additional default settings by USTART will be mentioned later.

Reinitialization

At any time the initial default conditions can be restored by:

CALL URESET

Termination

It is necessary to perform various file and buffer termination activities upon exit from
GCS by putting as the last GCS command of any program

CALL UEND

Use of this statement will insure that all GCS output is completed.

Erasing or Starting Off Again With a Clean Sheet
At various stages in running a program, it is often worthwhile to erase everything which
has been drawn or printed on a CRT screen or to ask the attendant of a plotter to replace
the old sheet on the plotter with a fresh clean one. The call for performance of this func-
tion is:

~ CALL UERASE

The pen position remains unchanged when erasure occurs.

Interactive Versus Batch

In a batch program there is no need to suspend execution in order to view multiple plots

i- 1

prior to erasing or starting off again with a clean sheet. In an interactive program an
alarm can be sounded to indicate a plot is done by:

CALL UBELL
Then to allow viewing of the plot use:

CALL UPAUSE

Simple Line-Drawing
The basic command in GCS for drawing lines is
CALL UPEN (X)Y)
This routine moves the beam (or pen) from its present coordinate position (X0,Y0) to a
designated new location (X.Y). Pen status variables in the Graphics Status Area (GSA)

determine what kind of line (if any) is drawn as a result of this movement.

Until some sort of overt action is taken to change pen status, every UPEN movement will
cause a solid line to be drawn. (CALL USTART sets pen status to ‘LINE') CALL USTART
also sets the initial beam (pen) position to (0,0). Example 1I-1 shows a simple series of
CALL UPEN commands which will draw a square by 4 basic pen-movements.

Invisible Lines
If one wanted to draw a similar square starting at some location other than the origin, one
needs to be able to move the beam or pen invisibly, that is, without drawing any line. One
way to do this is to use the UMOVE subroutine

CALL UMOVE (X,Y)
The effect is identical to UPEN except that no line of any kind is drawn as the beam or
pen moves from the old location (X0,Y0) to the new location (X,Y). Example lI-2 shows a
program which draws a square offset from the origin in this way. In this example we have
used subroutine UOUTLN to outline the square we are drawing within. (UOUTLN is
further explained in Chapter Ill) The default origin is at the lower left corner (0,0).
Using a Pen Status Mode Change to Draw Invislble Lines

The same effect as a call to UMOVE can be achieved by changing pen status mode from
its default condition to ‘NOLINE’ by means of a call to USET.

CALL USET (‘NOLINE’)

causes the system to again draw a line. Example 11-3 shows a program which uses this
approach to draw the same image as Example II-2.

Another subroutine that is considered to be a simple line drawing subroutine, capable, if
desired, of producing an invisible line as in the example above. A call to

CALL UPEN1 (X,Y,'NOLINE")
enables the user to generate an invisible line to (X,Y). The mode will be established as

indicated for only that 1 pen movement. Effectively, the above call is the same as the
CALL UMOVE (X,Y), or of the CALL USET (‘NOLINE’"), CALL UPEN (X,Y), CALL USET

ii-2

(‘LINE’) sequence. It will be shown throughout this text, however, that the chosen mode
can be one of many different line modes other than ‘NOLINE".

Pen Status Mode Changes Allow Many Kinds of Lines to be Drawn

The UPEN subroutines of GCS can draw many other kinds of lines, including lines in
various colors (if the plotting device permits), dashed lines, lines with tics along their
length, and lines of all these types with various kinds of terminating characters or sym-
bols. The number of permutations of line types and terminators to be used at the end of a
line is very large. Some of the more important are demonstrated later in Chapter VI.
However some of the basic options are considered below.

Alternate Colors

If the graphical device being used has the ability to display lines of different colors, the
user can request that any subsequent line be generated with one of seven colors, using
CALL USET (OPTION), where OPTION in this case is ‘WHITE,' ‘BLACK, ‘RED,’ ‘GREEN,’
‘YELLOW, ‘BLUE, ‘MAGENTA, or ‘CYAN.’

Many terminals such as the Tektronix do not have a multi-color capability and, as such
use the default color BLACK. Others, including most pen plotters, allow manual color
change by replacement of the drawing pen by one of another color. A color mode change
with such a device causes the plotter to position itself for pen replacement and a color
change request to be typed out on the control device.

Most things done with colors can be done on devices which do not have a color
capability by making distinctions through the use of plain lines, and various types of
dashed lines, arrow lines, ticmarked lines and so forth.

Vectors or Lines with Arrowheads

One frequently useful set of options is the arrowhead options. These are useful for draw-
ing vectors, dimension lines, etc. These use the following pen status modes:

Pen Status Description

‘ARROW'’ Draws a “forward vector” with its arrowhead at (X,Y)
‘BACKARROW’ Draws “backward vector’” with its arrowhead at (Xo,Yo)
‘DOUBLEARROW'’ Draws a ‘‘dimension line,” i.e, a line with arrowhead

pointing out at each end.

Example 11-4 demonstrates the use of the ‘ARROW’ option.

Tic Marked Lines

Another available option is tic lines, i.e., lines with tic marks at specified intervals along it.
Pen status may be set to draw such lines by using a call to USET.

CALL USET (‘TICLINE"
A call to UPSET

CALL UPSET (‘TICINTERVAL',PARAMETER)

ii-3

will change the interval along a ticline at which the tics will actually be placed. For
example:

CALL UPSET (‘TICINTERVAL'5)
CALL UPEN1 (XY, TICLINE")

will produce a ticline to (X,Y), marked off with tics at intervals of 5 units rather than the
default value of 10. Example II-5 shows several ticline options.
Dashed Lines
One can draw dashed lines by going to the ‘DASHLINE’ mode with a
CALL USET (‘DASHLINE")

The length of the dashes and or the intervals between the dashes can be modified, if
desired, with a

CALL UPSET (‘SETDASH’, DASHCODE)

the resulting dashed line will be repetitions of the effect caused by the combination of
the digits (0-9) as follows:

DASHCODE Effect on Effect on
Digit Visible Units Invisible Units
1 1 -
2 - 1
3 2 —
4 - 2
5 5 —
6 - 5
7 10 -
8 - 10
9 1 point -
0 -_ 1 point

The specification of a single digit for DASHCODE will produce standard dashed
(DASHCODE = 1-8) or standard dotted (DASHCODE = 9) lines. If the user desires a
non-standard dashed line he must specify a DASHCODE of two or more digits, followed
by a decimal point. The following sequence:

CALL USET (‘DASH’)
CALL UPSET (‘SETDASH',76.)
CALL UPEN (X)Y)

will produce for example, a dashed line to (X,Y) consisting of 10 visible units, 5 invisible
units, 10 visible units, 5 invisible units, etc. The physical length of a unit will be approx-
imately 0.04 inches for the majority of the devices. Example 11-6 illustrates several
dashed line options. The number of possible types of dashed lines is limited only by the
word length of the central computer.

Polar Coordinates

ii-4

The options absolute and rectangular (Cartesian) are established as defaults by
USTART, because most drawings use this simple coordinate system. A polar coordinate
system provides the user with the capability of referring to a location on the device in
polar coordinates (R,THETA) rather than in rectangular coordinates (X,Y). Example II-7
illustrates use of polar plotting.

Relative (Incremental) Plotting
The relative coordinate mode interprets the coordinate pair of the pen request as units

relative (positive or negative) to the previous pen position rather than as an absolute
position. Example 11-8 illustrates use of relative plotting.

ii-5

OO0O0O000 00000000

O00000 O O 000

THIS SAMPLE PROGRAM WILL DEMONSTRATE SIMPLE LINE-DRAWING BY
DRAWING A SQUARE BOX IN 4 PEN MOVEMENTS

INITIALIZE GCS

THIS INITIALIZATION SETS GCS TO RECTANGULAR, ABSOLUTE
COORDINATES, SOLID LINE PEN-DRAWING MODE, AND INITIAL PEN
COORDINATES (0,0)

CALL USTART

NOTE THAT ALL GCS SUBROUTINES (INCLUDING THE UPEN ROUTINE USE
TYPE REAL CALLING PARAMETERS. THUS COORDINATES MUST BE
ENTERED AS REAL NUMBERS, |.E. WITH DECIMAL POINTS

MOVE PEN TO (0,50) THEREBY DRAWING LINE (0,0) to (0,50)

CALL UPEN (0.50.)

MOVE PEN TO (50,50) THEREBY DRAWING LINE (50,50) TO (50,0)
CALL UPEN (50.,0.)

MOVE PEN TO (0,0) THEREBY DRAWING LINE (50,0) TO (0,0)

CALL UPEN (0.,0)

THIS COMPLETES DRAWING OF THE SQUARE

WRAP-UP. FIRST TERMINATE GCS BY CALL UEND. THEN STOP EXECUTION
WITH STOP. FINALLY END FORTRAN PROGRAM WITH END.

CALL UEND
STOP
END

EXAMPLE II-1

ii-6

ii-7

OO0O00 000 OO00000

(oNoNe

THIS PROGRAM DEMONSTRATES USE OF THE MOVE COMMAND TO MOVE
THE PEN INVISIBLY WITHOUT NEED FOR A MODE CHANGE. IT DRAWS A
SQUARE IDENTICAL TO THE PREVIOUS ONE.

INITIALIZE

CALL USTART
CALL UOUTLN

MOVE PEN INVISIBLY TO COORDINATES (45,45)
CALL UMOVE (45.45)

NO CHANGE HAS BEEN MADE IN PENSTATUS SO IT IS STILL IN THE DEFAULT
CASE OF SOLID LINES. DRAW THE SQUARE.

CALL UPEN (45.95)
CALL UPEN (95.95.)
CALL UPEN (95.45)
CALL UPEN (45.45)
WRAP UP

CALL UEND

STOP
END

EXAMPLE II-2

ii-8

.)\J))

Yydy

-““
e o o o

mmmm
E2segen

3339339

ii-9

(eXoloNoNoNoNoXe)

000

oNeoNe

OO0

THIS PROGRAM DEMONSTRATES THE USE OF A MODE CHANGE TO MOVE
PEN POSITION WITHOUT DRAWING A LINE. OTHERWISE IT DRAWS A
SQUARE IDENTICAL TO PREVIOUS ONE.

FOLLOWING INITIALIZATION BY USTART IS ALWAYS NECESSARY. AMONG
OTHER THINGS IT AUTOMATICALLY SETS PENSTATUS FOR DRAWING SOLID
LINES AND INITAL PEN POSITION TO COORDINATES (0,0).

CALLUSTART
CALL UOUTLN

SET MODE TO 'NOLINE' THEN MOVE PEN TO COORDINATES (45,45) WITHOUT
DRAWING A LINE

CALL USET ('NOLINE)
CALL UPEN (45.,45))

NOW RESET PENSTATUS FOR DRAWING SOLID LINES AND DRAW SQUARE
CALL USET ('LINE")

CALL UPEN (45.95)

CALL UPEN (95.95)

CALL UPEN (95.45))

CALL UPEN (45.45)

WRAP UP

CALL UEND

STOP
END

EXAMPLE [1-3

ii-10

SREREEFRFEES

USTART

USET C“NOLINE®D
UPEN (45.,45.0
USET C°LINE®)

UPEN €45.,85.)
UPEN €85.,85.)
UPEN €85.,46.0
UPEN C45.,45.0

ii-11

OO0

OO0

oNoNeoNeoNe!

SAMPLE PROGRAM USED TO ILLUSTRATE 'ARROW’,'BACKARROW’, AND
'DOUBLEARROW' LINE OPTIONS AVAILABLE THROUGH USET/UPEN.
INITIALIZE GCS, AND THEN DRAW THE QUTLINE OF OUR PLOTTING AREA

CALL USTART
CALL UOUTLN

MOVE TO VIRTUAL LOCATION (25,75), SET LINE TYPE TO'ARROW', AND
DRAW A LINE WHICHEXTENDS TO VIRTUAL LOCATION (75,75).

CALL UMOVE
CALL USET ('BACKARROW)
CALL UPEN (75.50.)

MOVE BEAM/PEN TO VIRTUAL LOCATION (25,25), SETLINE TYPE TO
'DOUBLEARROW’, AND THEN DRAW LINE WHICH EXTENDS TO VIRTUAL
LOCATION (75,25). TERMINATE THE PROGRAM AFTER LINE IS DRAWN.

CALL UMOVE (25.25)

CALL USET ((DOUBLEARROW)
CALL UPEN (75.25)

CALL UEND

STOP

END

EXAMPLE I-4

i-12

CALL
CALL
CALL
CALL
CALL
CALL

sTOP

USTART

UOUTLN

UMOVE €26.,76.)
USET C*ARROW’)
UPEN €76.,75.0
UMOVE €25.,58.)
USET C°BACKARROW®)
UPEN €75.,50.)
UMOVE ¢€2S.,25.)
USET ¢’DOUBLEARROW®)
UPEN ¢75.,26.)
UEND

ii-13

OO0

o000 oXeXeoNe OO0

OO0

SAMPLE PROGRAM USED TO ILLUSTRATE TIC LINE GENERATION PTIONS
AVAILABLE THROUGH GCS. INITIALIZE GCS, SET PEN-STATUS TO THE 'TIC'
MODE, AND THEN DRAW A LINE WHICH BEGINS AT (0.,99.) AND TERMINATES
AT (100.99.) USING THE DEFAULT TIC LENGTH.

CALL USTART

CALL USET ('TICLINE')
CALL UMOVE (0.99)
CALL UPEN (100.99)

REQUEST TICS TO APPEAR AT EVERY 5.0 VIRTUAL UNITS, AND DRAW A LINE
WHICH STARTS AT (0.60.) AND ENDS AT (1 00.,60.).

CALL UPSET ('TICINTERVAL'5)
CALL UMOVE (0.60.)
CALL UPEN (100.60)

REQUEST TICS TO APPEAR AT EVERY 10. VIRTUAL UNITS, AND DRAW A LINE
WHICH STARTS AT (0.,40.) AND ENDS AT (100.,40).

CALL UPSET ('TICINTERVAL',10))
CALL UMOVE (0.,40.)
CALL UPEN (100,.20)

REQUEST TICS TO APPEAR AT EVERY 20. VIRTUAL UNITS, AND DRAW A LINE
WHICH STARTS AT (0.,20.) AND ENDS AT (1 00.,20).

CALL UPSET ('TICINTERVAL',20)
CALL UMOVE (0.,20)
CALL UPEN (100.20)

REQUEST TICS TO APPEAR AT EVERY 50. VIRTUAL UNITS, AND DRAW A LINE
WHICH STARTS AT (0,1.) AND ENDS AT (1 00.1.).

CALL UPSET ('TICINTERVAL',50)
CALL UMOVE (0.,1)

CALLUPEN (100.1)

CALL UEND

STOP

END

EXAMPLE lI-5

ii-14

T

g
-
CJ
-
L

L

o+

ohe

-y

i

=

-’
=

C

+

L

L o

+

-

L

-
= 3
L
-
4

L

ol

USTART

USET C°TICLINE®)
UMOVE(¢®S.,88.)0
UPENC108.,88.)

UPSET C°TICINTERVAL®,2.)
UMOVE (8..88.)

UPEN C188.,88.)

UPSET C'TICINTERVAL' 5.0
UMOVE <8.,80.0

UPEN ¢108.,80.)
UPSET C*TICINTERVAL®,
UMOVE (8.,48.>

UPEN (128.,48.)
UPSET C°TICINTERVAL®,28.)
UMOVE €8.,28.)0

UPEN <108.,28.)

UPSET C°TICINTERVAL®,68.)
UMOVE <@.,1.)

UPEN C189.,1.0

UEND

18.5

ii-15

O000 0000 OO0 O0000O0

O000

OO0

SAMPLE PROGRAM USED TO ILLUSTRATE DASHED LINE GENERATION

OPTIONS AVAILABLE THROUGH GCS. INITIALIZE GCS, SET THE PEN-STATUS

TO'DASH'MODE, AND THEN DRAW A LINE WHICH BEGINS AT (0.,100.) AND
TERMINATES AT (100,,100.). THE DEFAULT VALUE OF DASH WILL BE USED
FOR THIS CASE.

CALL USTART

CALL USET ('DASHLINE’)
CALL UMOVE (0.,100))
CALL UPEN (100,100.)

SET THE DASH SPECIFICATION TO 54, AND DRAW A LINE THAT STARTS AT
(0.80.) AND ENDS AT (100.,80.).

CALL UPSET (‘'SETDASH',54))
CALL UMOVE (0.60.)
CALL UPEN (100.60.)

SET THE DASH SPECIFICATION TO 52., AND DRAW A LINE THAT STARTS AT
(0.,60.) AND ENDS AT (100.,60.).

CALL UPSET (‘SETDASH',52))

SET THE DASH SPECIFICATION TO 5212, THEN GENERATE A LINE THAT
STARTS AT (0.,40.) AND ENDS AT (100.,40).

CALL UPSET (‘SETDASH',5212)
CALL UMOVE (0.,40)
CALL UPEN (100,40

SET THE DASH SPECIFICATION TO 5434., THEN GENERATE A LINE THAT
STARTS AT (0.,20) AND ENDS AT (100.,20.).

CALL UPSET (‘SETDASH’,5434.)
CALL UMOVE (0.,20.)
CALL UPEN (100.,20))

SET THE DASH SPECIFICATION TO 96., AND DRAW A LINE THAT STARTS AT
(0.,0.) AND ENDS AT (100.,0.).

CALL UPSET ('SETDASH’,96)
CALL UMOVE (0,,0.)

CALL UPEN (100.,0)

CALL UEND

STOP

END

EXAMPLE II-6

ii-16

——.—.—————————.—.—.—————————.———

USTART

USET C°DASHLINE®)
UMOVE ¢@,.,188.)

UPEN <188.,188.)

UPSET (“SETDASH® 54.0
UMOVE (8.,88.)

UPEN ¢188.,88.)

UPSET C'SETDASH' 82.>
UMOVE €9.,868.)

UPEN CIBB.,OG

UPSET C*"SETDASH®,5212.0
UMOVE CG..“)

UPEN C180.,48

UPSET C'SEI’DASH' 5434.>
UMOVE (€8.,20.)

UPEN cwa.,zs.J

UPSET (°SETDASH’,98.)
UMOVE ¢9.,8.2

UPEN C188.,8.0

UEND

Hiaddaaaddddaadaaadd:

i-17

OO00 000 OO0000

(oXoXo]

100

THIS PROGRAM WILL DEMONSTRATE THE USE OF POLAR PLOTTING BY
DRAWING A QUARTER OF A CIRCLE

INITIALIZE LINE DRAWING SPEED OF TERMINAL TO 120 CHARACTERS PER
SECOND

CALL USTART

CALL UPSET (‘SPEED’,120.)

CALL UERASE

INDICATE PLOTTING WILL BE IN POLAR COORDINATES (R,9)
CALL USET (‘POLAR)

PLOT A QUARTER OF A CIRCLE THAT HAS A RADIUS OF 100 IN NINE DEGREE
INCREMENTS FROM ZERO TO NINETY DEGREES

RADIUS=100.

DO 1001=1,11
ANGLE=FLOAT (i-1) * 9.
CALL UPEN (RADIUS ANGLE)
CALL UPEN(0.0)

TERMINATION
CALL UEND

STOP
END

EXAMPLE iI-7

i-18

o000 OO0O000

OO0

THIS PROGRAM WILL DEMONSTRATE THE USE OF RELATIVE PLOTTING

INITIALIZE LINE DRAWING SPEED OF TERMINAL TO 120 CHARACTERS PER
SECOND

CALL USTART
CALL UPSET ('SPEED’,120)
CALL UERASE

INDICATE PLOTTING WILL BE DONE IN RELATIVE MODE AND DRAW A BOX
100 DATAUNITS ON A SIDE

CALL USET ('RELATIVE’)
CALL UPEN (100.0)
CALL UPEN (0.100.)
CALL UPEN (-100.0)
CALL UPEN (0.,-100))

TERMINATION
CALL UEND

STOP
END

EXAMPLE II-8

ii-19

CHAPTER Ill
VIRTUAL AND DEVICE GRAPHICS

Outlining the Plotting Area

To obtain an outline of the area within which all graphical activity will be performed, the
programmer may invoke the GCS subroutine UOUTLN:

CALL UOUTLN
Although the use of UOUTLN certainly is not necessary for most graphical applications,
there are many times (particularly during the learning and debugging phases) when it is
useful for the programmer to know the physical boundaries of the display he is generat-
ing.
The Default Case and Simple Extensions

The examples presented so far have assumed the use of variables which fall into the
range of values:

0 LE. X .LE. 100
0 .LE. Y .LE. 100

with no specific control over where on the screen (or plotting bed) the pictures are
actually drawn. This is the default case established by USTART.

The user can easily change the range of permissible values to the ranges
XMIN LE. X LE. XMAX

YMIN LE. Y LE. XMAX

by use of the command
CALL UWINDO (XMIN,XMAX YMIN YMAX)

This permits the user to plot anywhere in the space defined by the the four parameters in
the subroutine call.

The values of the four parameters may be any FORTRAN real numbers permissible on
the particular computer in use (subject only to the restriction XMIN .NE. XMAX and YMIN
NE. YMAX). See Example Ill-1.

Increasing and Decreasing Apparent Picture Size

Through the use of UWINDO, it is possible to increase or decrease the apparent picture
size without having to change the values of the parameters required to generate the dis-
play. This facility effectively provides an elementary “zoom" capability which may be
readily utilized under GCS. Example [1I-2 illustrates a simple six-step “zoom-out” by
successively increasing the window specifications prior to generating each of the
figures. Note that the pen commands required to draw the figure are identical in each of
the six steps, and that the only dynamic entity is the window itself. Example lI1-3 illustr-

ii-1

ates a six-step “zoom-in” through decrementing the virtual window. It should be noted
that an increase in the window specifications decreases the apparent picture size
(zoom-out) and that a decrease of the window specifications yields an increase in
apparent picture size (zoom-in).

Distortion

It is important to note the ratio of the X-to-Y window specifications when defining new
window boundaries, as ratios other than unity indicate that a distorted window will be
contructed. Example lII-4 illustrates this type of distortion by displaying the same basic
information provided by Example I11-3 with the exception that non-square windows are
utilized.

Clipping the Edges of the Picture

Should the graphics programmer attempt to display information at coordinate locations
which lie outside of the window boundaries, GCS will “clip” the display at the window
boundaries and any graphical activity attempted outside of the boundaries will not be
displayed. Example Ill-4 illustrates the clipping feature applied to a simple six-level
“zoom-in". We will again return to the topic of clipping after we first consider the con-
cept of device coordinate addressing under GCS.

Expanding Flexibiiity and Capabilities: Device Mode

When desired, GCS provides means of very detailed control of where pictures are drawn
on the physical device. This may be done by going to the 'DEVICE’ mode with a

CALL USET (‘DEVICE’)

Thereafter all coordinates are measured directly in device measurement units from the
lower left corner of the display screen or plotting bed.

Several optional units of measure are available on the display screen or plotting bed:

CALL USET (‘CENTIMETERS') causes horizontal and vertical distances to be
measured in centimelers.

CALL USET (‘(FONTUNITS’) causes horizontal measurement in units of the width of
standard alphabetic characters (usually the hardware characters for the device
being used) and vertical measurement in units of the height of the alphabetic
characters

CALL USET (‘PERCENTUNITS’) cause horizontal measurement in units of a per-
centage of the full width of the screen or plotting bed and vertical measurement in
units of one percent of the full physical height of the screen or plotting bed.

CALL USET (‘RASTERUNITS') causes horizontal and vertical measurement in
terms of the smallest addressable unit for a particular device.

CALL USET ('INCHES’) causes the horizontal and vertical measurement on the dis-
play to revert to the default case of inches.

See Example -6

ii-2

Viewporting: A More Flexible and Advanced Concept of Picture Control

Particular locations on the graphic device screen or plotting bed can be designated a
device plotting area by the command

CALL UDAREA (XMIN,XMAX,YMIN,YMAX)

where XMIN.XMAX.YMIN and YMAX are measured in the currently defined units of
measure in the device mode: inches, centimeters, percentunits, fontunits or rasterunits.
Designation of this device plotting area has no effectin the device mode. However, in the
virtual mode, either by default or by executing a call to USET (‘VIRTUAL", this device
plotting area is at the heart of an extremely powerful concept of graphic control known as
viewporting. This concept is most easily visualized by referring to the next figure while
following the description below and the sample programs and their output.

The user may pick any scale or range of values desired to plot by means of a call to
UWINCO. For example, to plot valuesin therange 0 < X < 1000 and0 < Y < 1000, give
the command

CALL UWINDO (0.,1000.,0.,1000.)

A call to UDAREA is used to specify where on the device to plot data. Then, plotin a 4-
inch square at the left bottom of the display screen, first make sure that the unit of
measure is ‘INCHES' then give the command

CALL UDAREA (0.4.0.4)

Next, make sure that the mode is ‘VIRTUAL' and do any plotting desired. Any values
within the “virtual window” O .LE. X,Y .LE. 1000 is projected into the corresponding posi-
tion of the “device plotting area” 0 .LE. X,Y, .LE. 4. For example, the user's numeric
values of Y = 0, X = 0 would map into the lower left corner of the screen or plotting bed
at position X = 0, Y = 0. User values of X = 1000, Y = 1000 would map into the upper
right corner of the 4-inch device plottingareaat X = 4,Y = 4. User values of X = 250,Y
= 750 would correspondingly map into X = 1, Y = 3.

But what happens if the user tries to draw a line to a point outside the O .LE. X, Y .LE.
1000 window, for example, X = 250, Y = 15007 Direct projection would indicate that
such a line would rise vertically from the previous point to a point X = 1,Y = 6, butsuch
a line would pass out of the designated device plotting area. What happens is that the
line is ‘clipped' off at the edge of the window, i.e, drawn only to the limit of the window
(which is, of course, also the limit of the device plotting area). Thus if any other lines or
textual material had previously been put into adjacent area just outside the designated
plotting area it would be protected against being overwritten by data which was con-
sidered to be irrevelant because it fell outside the expressed values of plotting interest
specified by UWINDO. This ‘clipping’ action associated with mapping from a virtual win-
dow to a specified device area adds markedly to the power and ease of pictorial control
in GCS.

Here are some examples of the use of viewporting:

A. Convenient Units: the imaginary or expandable plotting area or virtual window
can be defined to correspond to any convenient units which the user would
like to think in terms of.

B. Virtual Window Modification: the user can selectively examine different areas
of an entire display through the redefinition of the viewport followed by the pen
movements of that entire display. This idea can also be used to examine a
small area of a display in great detail.

ii-3

C. Device Window Modification: the same display can be generated at many
different locations on the device with the same pen movements by fixing the
viewport and changing the device area, as illustrated in Example IlI-7. An
extension of this device area modification capability allows the user to achieve
distortions, as in Example 111-8.

Device Independent Plotting

The previous examples that used subroutine UDAREA were written for a Tektronix 4010/
4013 terminal. A device independent program can be written by using ‘PERCEN-
TUNITS’ or

CALL USTUD (ARRAY)

iii-4

VIRTUAL OR IMAGINARY SPACE DEVICE OR PHYSICAL SPACE
(- ————— === -1 ‘; (e.g., CRT,PEN PLOTTER, ETC.)

v

USER SPECIFIED
VIRTUAL WINDOV‘\L—'?

USER SPECIFIED
DEVICE WINDOW
y 4

————-———-

_____________ d
A USER'S CALL TO PEN MOVEMENTS ARE WITH THESE PEN MOVEMENTS, IF WITHIN THE
RESPECT TO THE USER SPECIFIED VIRTUAL VIRTUAL WINDOW OF THE FIRST DIAGRAM,
WINDOW. WILL ACTUALLY APPEAR WITHIN THE USER
SPECIFIED DEVICE WINDOW OF THE ABOVE
DIAGRAM.

DEVICE WINDOW

-—
— ——
- -

-
- -

- -
-

-
P
-

—-—
e
- -

-

— —
-

-

THIS ACTUALLY OCCURS AS THE RESULT OF A MAPPING DIRECTLY FROM THE
VIRTUAL WINDOW TO THE DEVICE WINDOW.

e 1
| |
| |
I |
| |
| |]
I I '
| U |
|
: .
| |
— |
FOR EXAMPLE, THOSE PEN MOVEMENTSWHICH WILL ACTUALLY APPEAR WITHIN
FALL WITHIN THIS PARTICULAR VIRTUAL THIS PARTICULAR DEVICE WINDOW.
WINDOW A .n . DO -

Figure 3-1. The Viewporting Concept
0791-1

iii-5

OO00O0

COO00O00O 00000

OO0 000 ooo

oNoNe

THIS PROGRAM GENERATES TWO VECTORS WITH ARROW LINES, AND THE
RESULTANT VECTOR WITH A DASHED ARROW LINE.

INITIALIZE THE SYSTEM AND GENERATE AN OUTLINE

CALL USTART
CALLUOUTLN

REDEFINE THE VIRTUAL WINDOW

-50000 < X < 50000

0.00001 < Y < 0.000

CALL UWINDO (-50000.,50000.,0.00001 ,0.00005)
DRAW THE TWO VECTORS

MOVE TO THE BEGINNING POINT OF THE FIRST VECTOR SET TO ARROW
MODE AND DRAW VECTOR FROM (-40000.,0.00004) TO (40000.0.00004)

CALL UMOVE (-40000.,0.00004)

CALL USET ((ARROW)

CALL UPEN (40000.,0.00004)

DRAW SECOND VECTOR FROM END OF FIRST TO (40000.,0.00002)
CALL UPEN (40000.0.00002)

MOVE TO BEGINNING OF VECTOR SYSTEM

CALL UMOVE (-40000.,0.00004)

SET MODE TO DRAW DASHED ARROW AND DRAW RESULTANT VECTOR

CALL USET ('DARROW)
CALL UPEN (40000.0.00002)

TERMINATION
CALL UEND

STOP
END

EXAMPLE Iil-1

iii-6

USTART

UOUTLN

UWINDO (-58008.,588008.,8.20801,8.280805)
UMOVE (—48888.,08.80884)

USET C°ARROW®)

UPEN (42003.,8.88804)

UPEN C42008.,8.020882)

UMOVE ¢—48808.,8.08088084>

USET C°DARROW®)

UPEN <42008.,8.08802)

UEND

iii-7

ololoNoXoNeoXe)

oXoXe

OO0 OO0

OO0

SAMPLE PROGRAM USED TO ILLUSTRATE ELEMENTARY SIX-LEVEL
ZOOMING BY ADJUSTING ONLY THE VIRTUAL WINDOW BOUNDARIES. NOTE
THAT THE PEN COMMANDS REQUIRED TO DRAW THE FIGURE REMAIN
UNCHANGED.

ENTER GCS AND SETUP LOOP TO PERMIT US TO ZOOM AWAY FROM FIGURE.

CALL USTART
DO1I=16

ERASE THE SCREEN AND DEFINE THE BOUNDARIES FOR OUR NEW WINDOW.

CALL UERASE
BOUNDS=100.*FLOAT(I)
CALL UWINDO (0.,BOUNDS,0.,BOUNDS)

OUTLINE THE DEFAULT DEVICE PLOTTING AREA, AND DRAW THE FIGURE.

CALL UOUTLN
CALL DRWFIG
CONTINUE

WRAP-UP ALL GRAPHIC ACTIVITY AND TERMINATE THE FORTRAN
PROGRAM.

CALL UEND

STOP

END

SUBROUTINE DRWFIG

SUBROUTINE USED TO GENERATE A PENTAGON WITHIN A CIRCLE & PAUSE.
SEVERAL GCS UTILITY SUBROUTINES ARE UTILIZED BUT NOT DESCRIBED
AT THIS POINT. (SEE CHAPTERS V AND VIFOR DETAILS).

CALL UCRCLE (50.50.50.)
CALL UPLYGN (50.50.5.,25)
CALL UBELL

CALL UPAUSE

RETURN

END

EXAMPLE lII-2

ii-8

BOUNDS = 188. w» FLOATCID
CALL UWINDO <8.,BOUNDS, 8.,BOUNDS)
UOUTLN

jii-9

o000 OO0 ololoNoNoXoNe)

OO0

QOO0

SAMPLE PROGRAM USED TO ILLUSTRATE ELEMENTARY SIX-LEVEL
ZOOMING BY ADJUSTING ONLY THE VIRTUAL WINDOW BOUNDARIES. NOTE
THAT THE PEN COMMANDS REQUIRED TO DRAW THE FIGURE REMAIN
UNCHANGED.

ENTER GCS AND SETUP A LOOP TO PERMIT US TO ZOOM TOWARD FIGURE.

CALL USTART
DO11=16

ERASE THE SCREEN AND DEFINE THE BOUNDARIES FOR OUR NEW WINDOW.

CALL UERASE
BOUNDS=50.-(5."FLOAT(I-1))
CALL UWINDO (-BOUNDS,BOUNDS,-BOUNDS,BOUNDS)

OUTLINE THE DEFAULT DEVICE PLOTTING AREA, AND DRAW THE FIGURE.

CALL UOUTLN
CALL DRWFIG
CONTINUE

WRAP-UP ALL GRAPHIC ACTIVITY AND TERMINATE THE FORTRAN
PROGRAM.

CALL UEND

STOP

END

SUBROUTINE DRWFIG

SUBROUTINE USED TO GENERATE A PENTAGON WITHIN A CIRCLE & PAUSE.
SEVERAL GCS UTILITY SUBROUTINES ARE UTILIZED BUT NOT DESCRIBED
AT THIS POINT. (SEE CHAPTERS V AND VI FOR DETAILS).

CALL UCRCLE (0,0.,25.)
CALLUPLYGN(0.0.5.,12.5)
CALL UBELL

CALL UPAUSE

RETURN

END

EXAMPLE I11-3

iii-10

/A~
\—/

CALL USTART
POt I=1,8
CALL

2

UERASE
BOUNDS = E@. ~ C6. » FLOATCI-1)
¢~BOUNDS, BOUNDS,

¢

—~BOUNDS, BOUNDS)

DRWFIS
UCRCLE ¢9.,9.,25.)

§TOP

END

CALL «e2B.
CALL WLYW w-.atostolzts)
CALL UBELL

CALL

END

iii-11

OO0 OO0 OO0 oXoloXoXoXoXoXe!

O0000

SAMPLE PROGRAM USED TO ILLUSTRATE ELEMENTARY SIX-LEVEL
ZOOMING BY ADJUSTING ONLY THE VIRTUAL WINDOW BOUNDARIES. NOTE
THAT THE PEN COMMANDS REQUIRED TO DRAW THE FIGURE REMAIN
UNCHANGED. ALSO NOTE THE DISTORTION DUE TO THE EFFECT OF NON-
SQUARE WINDOWING.

ENTER GCS AND SETUP A LOOP TO PERMIT US TO ZOOM TOWARD FIGURE.

CALL USTART
DO1I=186

ERASE THE SCREEN AND DEFINE THE BOUNDARIES FOR OUR NEW WINDOW

CALL UERASE
XBOUND=50.-{5.*FLOAT(I-1))
YBOUND=50.-(2.5*FLOAT(I-1))

CALL UWINDO (-XBOUND,XBOUND,-YBOUND,YBOUND)

OUTLINE THE DEFAULT DEVICE PLOTTING AREA WE HAVE JUST DEFINED,
THEN DRAW THE FIGURE.

CALL UOUTLN
CALL DRWFIG
CONTINUE

WRAP-UP ALL GRAPHIC ACTIVITY AND TERMINATE THE FORTRAN PROGRAM

CALL UEND

STOP

END

SUBROUTINE DRWFIG

SUBROUTINE USED TO GENERATE A PENTAGON WITHIN A CIRCLE & PAUSE.
SEVERAL GCS UTILITY SUBROUTINES ARE UTILIZED BUT NOT DESCRIBED
AT THIS POINT. (SEE CHAPTERS V AND VI FOR DETAILS).

CALL UCRCLE (0.,0.,25.)
CALLUPLYGN (0.0.5.,12.5)
CALL UBELL

CALL UPAUSE

RETURN

END

EXAMPLE Ill-4

iii-12

©
TN
=

CALL USTART
DO 1 I =4, O
UERASE

XBOUND = 68. — C5. # FLOATCI-1D)
YBOUND = 68. — ¢2.5 # FLOATCI-1))
CALL UWINDO <—XBOUND, XBOUND, ~YBOUND, YBOUND)D

SUBROUTINE DRWFIG

CALL UCRCLE (8..8.,25.D
CALL UPLYGN ¢8..8..56..12.8)
CALL UBELL

CALL UPAUSE

RETURN

END

iii-13

OO0 0000000000

COO000

O000

DOOOCO

SAMPLE PROGRAM USED TO ILLUSTRATE ELEMENTARY SIX-LEVEL
ZOOMING BY ADJUSTING ONLY THE VIRTUAL WINDOW BOUNDARIES. NOTE
THAT THE PEN COMMANDS REQUIRED TO DRAW THE FIGURE REMAIN
UNCHANGED. ALSO NOTE THE CLIPPING OF THE DISPLAY AT THE WINDOW
BOUNDARY.

ENTER GCS AND SETUP A LOOP TO PERMIT US TO ZOOM TOWARD FIGURE.
CALL USTART

DO1I=16

ERASE THE SCREEN AND DEFINE THE BOUNDARIES FOR OUR NEW WINDOW.

CALL UERASE
BOUNDS=100.-(15.*FLOAT(I-1))
CALL UWINDO (0.,BOUNDS,0.,BOUNDS)

OUTLINE THE DEFAULT DEVICE PLOTTING AREA WE HAVE JUST DEFINED,
THEN DRAW THE FIGURE.

CALL UOUTLN
CALL DRWFIG
CONTINUE

WRAP-UP ALL GRAPHIC ACTIVITY AND TERMINATE THE FORTRAN
PROGRAM.

CALL UEND

STOP

END

SUBROUTINE DRWFIG

SUBROUTINE USED TO GENERATE A PENTAGON WITHIN A CIRCLE AND
PAUSE. SEVERAL GCS UTILITY SUBROUTINES ARE UTILIZED BUT NOT
DESCRIBED AT THIS POINT. (SEE CHAPTERS V AND VI FOR DETAILS).

CALL UCRCLE (50.,50.,50.)
CALL UPLYGN (50.50.,5.,25.)
CALL UBELL

CALL UPAUSE

RETURN

END

EXAMPLE III-5

iii-14

- A

CALL USTART
DO 1 I =1, 6
CALL

UERASE
BOUNDS = 188. — C15. ® FLOATCI-1JD
CALL UWINDO <@., BOUNDS, 8., BOUNDS)
CALL UOUTLN
CALL DRWFIS

CONTINUE
CALL UEND
sTOP

END

SUBROUTINE DRWFIG

CALL UCRCLE (E50.,568.,58.)
CALL UPLYGN (EB9..58..6..,256.)
CALL UBELL

CALL UPAUSE

RETURN

END

iii-15

OO0

oNeoXoXe)

OO0

O000

OO0

THIS PROGRAM GENERATES A SIMPLE STREET DIAGRAM FOR A TEKTRONIX
4010/4013 TERMINAL.

INITIALIZATION, DEVICE MODE ENTRY, AND OUTLINE GENERATION

CALL USTART
CALL USET ('DEVICE)
CALL UOUTLN

GENERATION OF ROADS WITH THE DEFAULT CASE OF LINES IN TERMS OF
INCHES.

CALL UMOVE (0.3,2.7)
CALL UPEN (7.2,2.7)
CALL UMOVE (7.2,2.1)
CALL UPEN (4.5,2.1)
CALL UPEN (2.5,0.3)
CALL UMOVE (1.7,0.3)
CALL UPEN (3.7,2.1)
CALL UPEN (0.3,2.1)

GENERATION OF HOUSES WITH DASHED LINES IN TERMS OF CENTIMETERS.

CALL USET ('CENTIMETERS')
CALL USET ('DASH’)
CALL UMOVE (12.5,5.0)
CALL UPEN (15.5)
CALL UPEN (15.2.5)
CALL UPEN (125.2.5)
CALL UPEN (125,5)
CALL UMOVE (5.7.5)
CALL UPEN (11.3,7.5)
CALL UPEN (11.3,10.0)
CALL UPEN (5.,10)
CALL UPEN (5.,7.5)

GENERATION OF DIRECTION REFERENCES WITH ARROW LINES IN TERMS OF
PERCENTUNITS

CALL USET ('PERCENTUNITS')
CALL USET ('(ARROW)

CALL UMOVE (10.,80)

CALL UPEN (20.80.)

CALL UMOVE (15.75))

CALL UPEN (15,85))

TERMINATION
CALL UEND

STOP
END

EXAMPLE IlI-6

iii-16

— E— S s — — —

USTART
USET C’DEVICE‘D

UOQUTLN

UMOVE €8.3,2.70
UPEN €7.2,2.70

UMOVE <€7.2,2.1)D
UPEN €4.5,2.1)
UPEN €2.5,0.3)
UMOVE (¢1.7,8.

n

(7

q

L Y

-
vow

UMOVE €12.5,5.8)
UPEN C15.,.5.)
UPEN €15.,2.8)
UPEN €12.5,2.85)
UPEN €12.5,5.)
UMOVE ¢5.,7.8)
UPEN €11.8,7.8)
UPEN C11.38,10.8
UPEN ¢5.,18.)
UPEN ¢56.,7.80

UPEN C16..85.)
UEND

S RRREEEEEEREEREEECECERRRRRRRFS

iii-17

oXoNe] oXoXoXo X

OO0 000

o000

10

THIS PROGRAM GENERATES THE SAME DISPLAY AT VARIOUS LOCATIONS
ON A TEKTRONIX 4010/4013 TERMINAL.

INITIALIZATION AND OUTLINE.

CALLUSTART
CALL UOUTLN

FOREACH OF 3 PASSES, DEFINE A DEVICE PLOTTING AREA AND ‘DRAW’ THE
GRAPH.

DO10t=1,3

IF(LEQ.1)CALL UDAREA (2.5.,0.3.)
IF(LEQ.2)CALL UDAREA (4.5,7.4,0.5,3.5)
IF(LEQ.3)CALL UDAREA (2.5,5.5,2.5,5.5)

CALL SUBROUTINE TO DRAW GRAPH.
CONTINUE
TERMINATION

CALL UEND
STOP
END

SUBROUTINE USED TO DRAW GRAPH.

SUBROUTINE GRAFIT
CALL UMOVE (10.,10.,10.)
CALL USET (‘LINE")
CALLUPEN (90.,10.)
CALL UMOVE (20.,10.)
CALL UPEN (30.,70)
CALL UPEN (70.,70)
CALL UPEN (80.,10)
CALL UMOVE (30.,70)
CALL USET (‘DOUBLEARROW)
CALL UPEN (40,10
CALL UPEN (50.,70)
CALL UPEN (60.,10)
CALL UPEN (70.70))
RETURN

END

EXAMPLE IlI-7

iii-18

IBCONTINUE

n
-
n n n
0.))0.)))0.))))
° o o o ¢ o °
- Q=008 -6
LY TR o o X o a1
S s L R I Yk L R o
[.-] . e o -” e o 4&
- Q)
(S AV IR AN f\(

138
mmwmmw 4
E

e |

iii-19

OO0 0O0C0O0O0O0

OO0

10

THIS PROGRAM GENERATES A DISPLAY, A VERTICALLY DISTORTED
VERSION OF THE DISPLAY, AND A HORIZONTALLY DISTORTED VERSION OF
THE DISPLAY FOR A TEKTRONIX 4010/4013 TERMINAL.

INITIALIZATION.
CALL USTART

FOREACH OF 3 PASSES, ERASE THE SCREEN, PROVIDE AN OUTLINE, DEFINE
THE DEVICE WINDOW, AND 'DRAW' THE GRAPH.

DO101=1,3

CALL UERASE .
CALL UDAREA (0.,7.5,0.5.5)
CALL UOUTLN

IF(I.EQ.3)CALL UDAREA (3.5.0.,5.5)
CALL UMOVE (50.,20)

CALL UPEN1 (50.,80.'DOUBLEARROW’)
CALL UMOVE (10.90)

CALL UPEN (50.65))

CALL UPEN (100.,65)

CALL UMOVE (10.90)

CALL UPEN (50.50.)

CALL UPEN (100.50.)

CALL UMOVE (10.90.)

CALL UPEN (50.35.)

CALL UPEN (100.35)

CONTINUE

TERMINATION.
CALL UEND

STOP
END

EXAMPLE Ili-8

iii-20

]

R

UERASE

CALL USTART
18I =1, S
CALL

3

AREA €9.,7.4,8.,6.5)

CALL UD

:

4.>
£.5

4,2.
5.,8.,
>

s.,7.
Cso'

-
ww\l Y S 2 Ya D s a DA
o o o\ O ey O oy o

Jj38554858858

e 06 0 ¢ 0 0 g 0 0 g @

Q @ QW o
aa8833854324%

Vv UW J
o olsf wola)

mmwmwmmmmmmmwm
NEEFEEEREEEE

jii-21

OO0 OO0 OO0OO000 000 000

OO0

oXoNe

THIS PROGRAM DEMONSTRATES HOW TO SUPPORT DEVICE
INDEPENDENCE.

DIMENSION ARRAY (8)
INITIALIZE
CALL USTART

SET'DEVICE’ UNITS TO 'PERCENTUNITS' and call UDAREA for 100%. SINCE
ONE PERCENTUNIT IN THE X MAY DIFFER FROM ONE PERCENTUNIT IN THEY,
RESET TO 'INCHES’ AND THEN DIVIDE SCREEN.

CALL USET ('PERCENTUNITS")
CALL UDAREA (0.,100.,0.,100.)
CALL USET ('INCHES")

CALL USTUD (ARRAY’)

ASSUME SCREEN IS LONGER IN X

XMIN = ARRAY(5)

XMAX = AMIN1(ARRAY(6)/2., ARRAY(8))
YMIN = ARRAY(7)

YMAX = XMAX

PLOT THE SAME FIGURE ON HALF OF THE SCREEN

CALL UDAREA (XMIN,XMAX,YMIN,YMAX)
CALL UOUTLN

CALL FIGURE

CALL UDAREA (XMAX,XMAX*2. YMIN,YMAX)
CALL UOUTLN

CALL FIGURE

TERMINATION

CALL UEND

STOP

END

SUBROUTINE TO GENERATE A POLYGON
SUBROUTINE FIGURE

CALLUPLYGN (50.50.,5.,25)

RETURN
END

EXAMPLE I11-9

iii-22

CHAPTER IV
ALPHANUMERIC OUTPUT

Basic Alphanumeric Output

Under many circumstances, the graphics programmer would prefer to manipulate
alphanumeric data with the same ease that pertains to strictly graphical information.
Such a capability would expedite the labeling of figures, allow numerical values to be
printed at a specific location on the display, and permit a discrete separation of text from
graphical information should the user so desire. In order to provide these capabilities,
GCS has incorporated two very powerful alphanumeric output and editing routines,
UPRINT and UWRITE, which may be called by the following sequences:

CALL UPRINT (X,Y,DATA)
CALL UWRITE (XY, DATA)

X and Y are used to specify the starting position (in current units) of the first character of
the output text. All positional and coordinate addressing related to characters is
assumed to specify the position of the lower-left corner cf the given character. DATA is
interpreted in the fcllowing manner. based upon one of the four options available to the
user through a call to USET before invoking UPRINT or UWRITE:

A. TEXT—Under this default option, the routines will assume that DATA contains
Hollerith information delimited by a terminator and will output all text up to, but
not including that delimiter, beginning at the location specified by (X.Y). CALL
UPSET (‘TERMINATOR', CHARACTER) can change the terminator from the
default backslash character. There are four ‘hardware’ character sizes that
can be changed by CALL USET(SIZE) where SIZE can be ‘EXTRALARGE,
‘LARGE’, '"MEDIUM’, or 'SMALL’ (default).

B. REALNUMBER-—DATA is assumed to be a single-valued parameter whose
contents is assumed to be of type REAL. Editing will take place using ‘G’ for-
mat, and the text will be printed beginning at (X,Y).

C. INTEGER—As in the case of REALNUMBER, DATA is assumed to be single-
valued and of type REAL. The routines will perform a REAL to INTEGER con-
version and will print the resulit in ‘I' format.

D. XYCOORDINATES —DATA is assumed to be a 2 element REAL array whose
values specify two numbers to be editted and printed in the form: (X,Y).

UPRINT and UWRITE perform identical functions and differ only in the action taken upon
return from execution of the given subroutine. Upon exit, UWRITE moves the beam posi-
tion back to its original coordinates at the time it was invoked, whereas UPRINT leaves
the beam position at the end of the output text. Example IV-1 illustrates the four options
above.

Alphanumeric output through GCS is perhaps most conveniently manipulated through
the use of FONTUNIT coordinates under DEVICE mode. Under this USET option, the
(X.Y) coordinates are expressed directly in number of characters horizontally or vertical-
ly.

Margining

Since alphanumeric output through UPRINT and UWRITE can be ‘clipped’ when in ‘VIR-

iv-1

TUAL' mode the user is provided the capability to horizontally and vertically margin his
output (when in device mode) through an invocation to UMARGN:

CALL UMARGN (XLEFT XRIGHT,YBOTTM,YTOP)

XLEFT and XRIGHT represent the desifed left-most and right-most horizontal positions
expressed in DEVICE units within which alphanumeric output may be permitted. Max-
imum and minimum vertical margins are established by YBOTTM and YTOP respective-
ly. Should values of XLEFT, XRIGHT, YTOP, and YBOTTM be specified such that
XRIGHT < XLEFT or YTOP < YBOTTM, UMARGN will ignore the specified setting and
the margins will reflect their values prior to the call to UMARGN.

Margining affects alphanumeric output (when in device mode) in the following manner:

A. Should any character extend beyond the right margin, an automatic carriage
return and line feed are generated, followed by a position to the left margin and
output resumed.

B. Should the user position the beam at a location to the left of the left margin, the
beam is positioned to the left margin before output is initiated.

C. Should output be attempted at vertical positions outside the closed interval
defined by the minimum and maximum vertical margins, the beam is moved to
the maximum vertical margin before any output is begun.

See Example IV-2 for an example of margining.

Bulk or Mixed Aiphanumeric Output

For applications requiring bulk or mixed alphanumeric output, the graphics programmer
should consider the use of subroutine UPRNT1 and UWRIT1, which may be invoked by
the following calling sequence:

CALL UPRNT1 (DATA,OPTION)
CALL UWRIT1 (DATA,OPTION)

OPTION is a single-valued character variable which specifies the format or mode under
which DATA is to be editted and displayed; i.e, TEXT, REALNUMBER, GREEN, etc. DATA
specifies the actual information which is to be output by UPRNT1 and UWRIT1 under the
given OPTION. It should be noted that the constraints on DATA are identical to those
imposed by UPRINT and UWRITE.

UPRNT1 and UWRIT1 differ from UPRINT and UWRITE in the following respects:

A. Since no coordinate specifications are passed in the calling sequence, the
alphanumeric output will begin at the current beam position upon entry to the
subroutine.

B. The effects of OPTION apply only to the current output operation and upon exit
from the subroutine these effects are removed from the GSA.

Fortran Input-Qutput
For alphanumeric output used in interactive input-output communications and various

control and coordination activities (such as the printout of warning or error notifications),
the convenience of permitting the use of normal FORTRAN input-output statements may

iv-2

override the advantages of using UPRINT or UWRITE to process text. For such activities
to be performed successfully, it is essential that the terminal device be set for the receipt
of alphanumeric rather than graphic information, a task which is accomplished through a
call to UALPHA. On systems that buffer the graphics output, UALPHA must be called
prior to the Fortran 1/0 to flush the graphics output. It should be noted that all
alphanumeric FORTRAN output is unaffected by the margins established by the user.

Single Character Output

In isolated instances, it is desirable to combine the output of graphical and alphanumeric
information into one composite operation. This capability is provided through the
‘CHARACTER’ option available with UPEN, whereby a single printable character used as
a parameter to USET identifies that parameter as the current character for printing.
Thus, in order to print the character ‘A’ at (X,Y), the following commands would be
specified:

CALL USET (‘LAY
CALL UPEN (X,)Y)

Upon execution of the call to UPEN, the character ‘A’ will terminate the line drawn under
the current line option. It should be noted that the CHARACTER mode of operation used
in the above manner will remain in effect until any one of the acceptable UPEN suffixes is
specified; e.g., CALL USET (‘LNULL’). See Example IV-3.

An additional facility for single-character output is provided through subroutine UAOUT
which is called in the following manner:

CALL UAOUT (CHAR)

CHAR is a single character expressed in Hollerith format either as a quoted character
string or as an explicit variable. Since UAOUT outputs the given character at the current
beam position, the user should ensure that the beam is positioned to the proper coordi-
nates before invoking UAQUT. Character output through UAOUT is subject to the cur-
rent margin constraints applicable to UPRINT and UWRITE: in addition, this output
differs from that available through UPEN in that UAOUT positions the beam to next
character position after the specified character has been printed, whereas the UPEN
option always maintains the beam position at the center of the desired character. See
Example V-4 and compare to Example IV-3.

Scoftware Character Output

The preceding discussion of aiphanumeric output has been applicable only to HARD-
WARE character generation. Under certain circumstances, however, the sophisticated
user may desire character output which is rotated or scaled to suit a particular applica-
tion. For examples see Example IV-5, and IV-6. This capability is provided in GCS
through the SOFTWARE character option available through USET. Under this option, all
output is subject to the constraints imposed by the virtual window, whenever UPRINT is
called in '"VIRTUAL’ space. Although SOFTWARE characters are manipulated using the
same routines as those for output of HARDWARE characters, interested users are
directed to the relevant subroutine writeups for a discussion of the limitations imposed
on this form of output.

iv-3

OOO00O00O OO0 OO0000 (eloNoNoNoNoXoXoXe)

ODO0000

OO0

SAMPLE PROGRAM USED TO ILLUSTRATE OPTIONS AVAILABLE THROUGH
‘UPRINT" AND ‘UWRITE’. DEFAULT VIRTUAL WINDOW AND DEVICE AREA WILL
BE USED.

FIRST ESTABLISH A 2-COORDINATE ARRAY: COORD(2). PUT SAMPLE DATA
POINT (25,0.9999999E19) IN ARRAY. NOTE THAT COORDINATES SPECIFIED
IN ARRAY COORD ARE PRINTED. THEY MAY OR MAY NOT BE SAME AS
COORDINATES WHICH SPECIFY WHERE PRINTING IS TO OCCUR.

DIMENSION COORD (2)
DATA COORD/25.,0.9999999E19/

DEFAULT OPTION FOR ‘UPRINT’ AND ‘UWRITE’ IS FOR ‘TEXT". USE THIS
DEFAULT TO OUTPUT A LINE OF TEXT AT SAMPLE COORDINATE LOCATION
(0,100.) NOTE THE SEMICOLAN(;) IS THE DELIMITER.

CALL USTART
CALL UPSET (‘'TERMINATOR',")
CALL UPRINT (0.100./THIS IS A SAMPLE LINE OF QUTPUT TEXT:’)

SPECIFY THE ‘REALNUMBER’' OF OPERATION AND USE UWRITE TO PRINT AT
MIDSCREEN (50.50) A TYPICAL REAL NUMBER (100.)

CALL USET (‘(REALNUMBER’)
CALL UWRITE (50.50.,100.)

SPECIFY INTEGER' MODE AND PRINT AT COORDINATES (75.25) THE
SAMPLE INTEGER -123456789 NOTICE THAT SINCE ALL GCS PARAMETERS
ARE REAL NUMBERS, EVEN THIS INTEGER MUST BE PASSED IN REAL
NUMBER FORM |.E. -123456789.

CALL USET ('INTEGER)

CALL UPRINT (75.,25.-123456789))

EXAMPLE OF USING ‘XYCOORDINATE’ OPTION TO PRINT XYCOORDINATES.
NOTE THE VARIED FORM OF OUTPUT OF REAL NUMBERS WITH ‘G’ FORMAT

CALL USET ('XYCOORDINATE!)
CALL UWRITE (25.,75.,COORD)

END GCS (CALL UEND); STOP EXECUTION (STOP), END PROGRAM (END)

CALLUEND
STOP
END

EXAMPLE IV-1

iv-4

THIS I8 A SAMPLE LINE OF OQUTPUT TEXT

C2E.. . 182CE+2R)

180,

~123456788

DIMENSION COORD €20
COORD/25 . ., 8. 9808880E 18/
USTART

UPSET C’/TERMINATOR’,?37D
UPRINT €0..75.,°THIS I8 A SAMPLE LINE OF OUTPUT TEXT;‘)
USET C’/REALNUMBER’)D

UWRITE <68.,265.,1080.)

USET C‘INTESGER’D

UPRINT (75.,0.,-123456788.)
USET ¢’XYCOORDINATE’D
LNNRIIE ¢26..68.,COORD)

O
b
=5
>

SREEEFEFFFEr

iv-5

QOO0OO0O0OO0OO0

Q000 O

OO0 0000000000000 000

—_

SAMPLE PROGRAM TO ILLUSTRATE OPTIONS AVAILABLE THROUGH
MARGINNING. DEFAULT VALUES WILL BE USED IN THIS EXAMPLE WITH
ADDITIONAL CALLS TO UMARGN TO ADJUST THE ALPHANUMERIC WINDOW,
THIS PROGRAM WAS WRITTEN FOR A TEKTRONIX 4010/4013 TERMINAL.

SET UP 300 CHARACTER ARRAY NAMED SAMPLE; PUT TEXTINIT. NOTE
SEMICOLON (;) as character terminator

CHARACTER SAMPLE*300

DATA SAMPLE/'THIS IS A LINE OF OUTPUT TEXT WHICH IS LONG ENOUGH TO
CAUSE THE ALPHANUMERIC OUTPUT TO WRAP-AROUND. NOTE THE
EFFECTS WHICH THE DEFAULT MARGINS HAVE UPON OUTPUT;/INITIALIZE

CALL USTART

NOW PRINT IT W!TH FIRST CHARACTER OF PRINT STRING AT COORDINATE
LOCATION (20,25)

CALL UPSET (‘TERMINATOR’, ;')
CALL USET (‘FONTUNITS")
CALL UMARGN (35.,36,1.,35)
CALL USET (‘PERCENTUNITS")
CALL USET (‘DEVICE’)

CALL UPRINT (20.,25.,SAMPLE)

SECOND EXAMPLE

EXAMPLE ILLUSTRATING THE USEFULNESS OF MARGINING. THE MARGINS
WILL BE SET USING 'FONTUNIT' COORDINATE ADDRESSING WITH THE LEFT
MARGIN AT APPROXIMATELY MID-SCREEN, I.E. 35 CHARACTER-WIDTHS OR
FONTUNITS FROM THE LEFT EDGE, AND THE RIGHT MARGIN 1 FONTUNIT
LATER AT POSITION 36, GIVING A TOTAL MARGIN WIDTH OF ONE
CHARACTER.

POSITION PRINTING AT TOP OF PAPER. IN THIS EXAMPLE WE SPECIFY 4000
CHARACTER-HEIGHTS (FONTUNITS) FROM BOTTOM OF PAPER, AN
UNREASONABLY LARGE VALUE, SO GCS DEFAULTS TO THE LARGEST
PHYSICALLY POSSIBLE VALUE, THE TOP OF THE PAGE.

CALL UPRINT (0.,4000.,'HELLO THERE!:")

WRAP UP

CALL UEND

STOP
END

EXAMPLE IV-2

0 iv-6

~mMIMET-4 OrrmI

THIS IS A LINE OUTPUT WHICH

E THE ALPHANUMERIC

:

ULT MARGINS HAVE UPON OUTPUT

CHARACTER SAMPLEw300
DATA SAMPLE/‘THIS IS A

& QUTPUT TO WRAP-AROUND.

TO WRAP-ARODUND. NOTE THE EFFECTS

IS LONG

i

LINE OF OUTPUT TEXT
& WHICH I8 LONG ENQUGH TO CAUSE THE
NOTE THE

ALPHANUMERIC
EFFECTS WHICH THE

& DEFAULT MARGINS HAVE UPON OUTPUT; D

USTART
UPSET C’/TERMINATOR’,?;‘D
“ PERCENTUNITS®

USET ¢ LX)
A
USET <‘FONTUNITS’)
UMARBN ¢35.,38..1..35.)
UPRINT ¢8.,4808., HELLO
UEND

SIEEFFFFFFS

iv-7

SioXeloloXeloXoloNoNoNoNoRoNoXeXoXo)

O0O000 o000

OO0 0000 o000

o000

SAMPLE PROGRAM USED TO ILLUSTRATE SINGLE CHARACTER QUTPUT
AND LINE TERMINATOR OPTIONS AVAILABLE THROUGH ‘UPEN’. TWO
GRAPHS WILL BE PLOTTED:
(1) ALINEAREQUATION (Y=X). THE DATA FOR PLOTTING IT WILL BE
PRESTORED WITH THE VALUES OF THE INDEPENDENT VARIABLE X IN
THE ARRAY X AND CORRESPONDING VALUES OF Y IN THE ARRAY Y.

(2) A QUADRATIC EQUATION (Z=(.1*X)**2). THE DATA VALUES FOR THE
SAME VALUES OF THE INDEPENDENT VARIABLE X WILL BE STORED
INTHE Z ARRAY.

DEFAULT VIRTUAL WINDOW AND DEVICE AREA WILL BE USED. THE LINEAR
EQUATION WILL HAVE AN ‘A’ TERMINATOR AT THE END OF VISIBLE LINE
SEGMENT, WHEREAS THE QUADRATIC EQUATION WILL HAVE A ‘B’
TERMINATOR FOR EACH INVISIBLE LINE SEGMENT.

FIRST SET UP X,Y, & Z ARRAYS. PRESTORE DATA IN THEM

DIMENSION X(11),Y(11),2(11)

DATA X/0,10.,20..30.40.,50.,60.,70.,80.,90.,100./
DATAY/0,10.20.30.40.50.60.70.80.90.,100./
DATAZ/0.1.4.9.,16.25.36.49.64.81.,100./

ENTER GCS AND DRAW OUTLINE OF DEFAULT DEVICE PLOTTING AREA

CALL USTART
CALL UOUTLN

USTART HAS IMPLICITLY SET PEN TO SOLID-LINE MODE. NOW SPECIFY
THAT AN ‘A’ TERMINATOR SHOULD GO ON EVERY LINE AND MOVE TO INITIAL
(X.Y) POINT TO BE PLOTTED

CALL USET (‘LA")
CALL UMOVE (X(1),2(1))

DRAW 11 LINE SEGMENTS X(1).Y(1) TO X(2),Y(2) TO X(3),Y(3) AND SO ON TO
X(11),Y(11) THEREBY PLOTTING TOTAL EQUATION

DO 11=1,11
CALL UPEN (X(D,Y(I)

SET LINE TYPE TO ‘NOLINE’ AND SPECIFY THAT A ‘B' TERMINATOR IS TO BE
USED FOR EACH INVISIBLE LINE SEGMENT

CALL USET (‘NB’)

MOVE TO FIRST (X,2) POINT, THEN PLOT 11 (X,Z) VALUES
CALL UMOVE (X(1),2(1)

DO21=11

CALL UPEN (X(},Z(1))

WRAP UP

CALL UEND

STOP
END

EXAMPLE IV-3

iv-8

DIMENSION XC11D, YC11d, Z<C11D
DATA X/9.,10..20..%08.,48,.,50.,00.,70.,80,,80,,100./
DATA Y/0.,10..28..32.,48,..58.,68.,70.,80. 89.,10808./
DATA Z/8..1..4.,0.,16.,25.,86.,40.,64,,.81.,188./
CALL USTART
CALL UOGUTLN
CALL USET C’/LAYD
CALL UMOVE <XC12,Z<C10D
DO 1 I = 1, 11
1 CALL UPEN CXCID, YCIdD
CALL USET </NB‘)D
CALL UMOVE C(XC1D,ZC10D
po2X =1, 11
2 CALL UPEN <XCID, ZCXDD
CALL UEND
sTOoP
END

iv-9

(XN oNQ]

oNoXoXe)

OO00

oNeNoNQ)

OO0 00000

SAMPLE PROGRAM USED TO ILLUSTRATE CHARACTER TERMINATOR AND
A/NOUTPUT USED IN CONJUNCTION WITH GRAPHICAL OUTPUT FOR A
TEKTRONIX 4010/4013 TERMINAL.

CHARACTER ROUTINE*7(4)
DATA INDEX,Y0/0,5.73/
DATA ROUTINE/'UPEN;’/UAOUT; 'UPRINT; 'UWRIT1;/

ENTER GCS, DIVIDE PLOTTING AREA INTO 4 EQUAL SEGMENTS, CHOOSE
ONE OF THESE SEGMENTS, AND OUTLINE IT.

CALL USTART

CALL USET ('TERMINATOR’, ;')

DO5I1=1,2

X0=-182

YO=Y0-2.86

DO5J=12

XO0=X0+286

INDEX=INDEX+ 1

CALL UDAREA (XO,(XO+2.57),YO.(YO+2.57))
CALL UOUTLN

MOVE TO THE ORIGIN & SPECIFY STANDARD LINE WITH NO TERMINATOR. IF
'UPEN’ OPTION IN EFFECT, SPECIFY AN 'A’ AS THE TERMINATOR.

CALL UMOVE (0.,0)
CALL USET ('LNULL")
IF(INDEX.EQ.1) CALL USET ('LA")

DISPLAY A LINE THEN BRANCH TO ONE OF FOUR ROUTINES TO PRINT AN ‘A’
AT THE END OF THE LINE SEGMENT.

DO4K=14

CALL UPEN ((25.*FLOAT(K)).(25.*FLOAT(K)))
GO TO (4,1,2,3), INDEX

CALL UAOUT (‘A})

GOTO4

CALLUPRNT1 (‘A;', ' TEXT)
GOTO4

CALLUWRIT1 (A, 'TEXT")
CONTINUE

DISPLAY THE NAME OF THE ROUTINE WHICH WAS USED AT BOTTOM RIGHT
CORNER OF WINDOW.

CALL UPRINT (75.,2,ROUTINE(INDEX))
CONTINUE

WRAP-UP GRAPHICS ACTIVITY AND TERMINATE THIS FORTRAN PROGRAM
CALL UEND

STOP
END

EXAMPLE IV-4

iv-10

UPRNTI UMRIT]

o a2 N

§8E
C.g!l—l%
< X0

3

%

|
-

<
o
tn11on

- 2.
INDEX + 1
AREﬁ CXB, (XB+2.57), Y8, KYB+2.572D
E €8.,8.)
COLNULLYD
CINDEX .EQ. 1> CALL USET C’LA‘D

SHE§EE§§8
Ragz.]

CALL UWRITI C7A3‘, ‘TEXT?D
CONTINUE

CALL UPRINT C76..2..ROUTINECINDEXDD
CONTINUE

CALL UEND

STOP

END

iv-11

OCO0000CO00O0

OO0 OO0 OO0 0000

OO0 0000

SAMPLE PROGRAM USED TO ILLUSTRATE ALPHANUMERIC OUTPUT VIA THE
‘SOFTWARE' CHARACTER OPTION AVAILABLE UNDER GCS. THREE
EXAMPLES ARE INCLUDED: A/N OUTPUT USING THE DEFAULT SIZES OF
SOFTWARE CHARACTERS, A SAMPLE OF ITALICIZED OUTPUT, AND A
DEMONSTRATION OF REDUCED AND ROTATED A/N OUTPUT.

ENTER GCS, OUTLINE DEFAULT DEVICE PLOTTING AREA & SPECIFY THAT
SOFTWARE CHARACTERS ARE TO BE USED

CALL USTART

CALLUOUTLN

CALL USET (‘'SOFTWARE’)
CALL UPSET (‘TERMINATOR’, ;")

OUTPUT SOME TEXT WHICH STARTS AT LOCATION (10,5) AND USES THE
DEFAULT SOFTWARE CHARACTER SIZE.

CALL UPRINT (10.5.'DEFAULT TEXT SIZE:’)

SPECIFY THAT ITALICIZED CHARACTERS ARE DESIRED, AND OUTPUT A
STRING WHICH BEGINS AT LOCATION (10,90).

CALL USET (ITALICS)
CALL UPRINT (10.90.'SAMPLE OF ITALICS:’)

CHANGE THE CHARACTER TYPE BACK TO GOTHIC, AND SPECIFY THE SIZE
OF THE NEW SOFTWARE CHARACTER DESIRED — 2 VIRTUAL UNITS BY 3
VIRTUAL UNITS.

CALL USET (‘GOTHIC)

CALL UPSET (‘HORIZONTAL’,2.)

CALL UPSET (‘VERTICAL',3.)

MOVE TO THE ORIGIN OF THE CURRENT COORDINATE SYSTEM, AND
PERFORM A 45 DEGREE ROTATION ABOUT THIS ORIGIN.

CALL UMOVE (0.0)
CALL UROTAT (45))

OUTPUT A STRING WHICH BEGINS AT LOCATION (40,0) WITHIN THE
ROTATED COORDINATE SYSTEM.

CALL UPRINT (40.0.'REDUCED AND ROTATED CHARACTERS;")

WRAP-UP GRAPHICS ACTIVITY AND TERMINATE THE FORTRAN PROGRAM.

CALI_UEND
STOP
END

EXAMPLE IV-5

iv-12

SAMPLE OF ITARLICS

O
M
il
D
C
[
-]
—]
M
x
—
)
—i
N
M

>

¢’/ TERMINATORY, /37D
‘SOFTWARE‘ D

C18.,65., ‘DEFAULT TEXT SIZE,’D
‘ITALICSE’D

<18.,88.,/SAMPLE OF ITALICS;‘D
60THIC’ D

C/HORTZONTAL’ 2.2

ET C/VERTICAL’,3.)

€9.,0.0

T C46.0

5

:

2

SYEEERRRREEEEREE
i}

iv-13

C48.,0.,’REDUCED AND ROTATED CHARACTERS; ‘D

o XoNoNoXe)

OO0

OO0 00000 000

OO0

SAMPLE PROGRAM USED TO ILLUSTRATE ‘UPRINT' TO OUTPUT MIXED
ALPHANUMERIC DATA

INITIALIZE ALL VARIABLES WHICH WILL BE USED

CHARACTER OPTION*10(4)/'/REALNUMBER’, ‘INTEGER', 'REALNUMBER;,
‘INTEGER'/

CHARACTER TITLE*6(2)/'X = ;" 'Y =/

DATA X,Y./0.,0./

ENTER GCS, SET UP WINDOW AND DRAW AXES

CALLUSTART

CALL UOUTLN

CALL UWINDO (-1.,5.,-1.,5.)
CALL UMOVE (0.,-.5)

CALL UPEN1 (0.,4.4.'LARROW’)
CALL UMOVE (-.5,0)

CALL UPEN (4.4,0.,'LARROW))

MOVE TO ORIGIN AND MARK IT
CALL UPEN (X,Y,'NO")

DRAW A SEGMENT OF A PARABOLA, MARK THE COORDINATES AT
INTERVALS OF .5 FOR X AND ALTERNATELY OUTPUT THE VALUES OF X AND
Y AS REAL AND INTEGER.

WHEN EXECUTING THIS PROGRAM ON CDC MACHINES, USE THE ROUND
OPTION ON THE FTM COMPUTER IN ORDER TO ASSURE CORRECT
PRINTOUTS

DO1I=14
5

CALL UPEN (X,Y)

CONTINUE

CALL UPEN1 (X,Y,'NO’)

CALL UPRNT1 (TITLE(1),'TEXT)
CALL UPRNT1 (X,OPTION(1))
CALL UPRNT1 (TITLE(2),' TEXT")
CALL UPRNT1 (Y,OPTION(1))
CALL UMOVE (X,Y)

CONTINUE

WRAP-UP GRAPHICS ACTIVITY AND TERMINATE PROGRAM.
CALL UEND

STOP
END

EXAMPLE V-6

iv-14

= | .6Y = 2.26

-y Y =y

w §Y = 25

\ 4

CHARACTER OPTION®1GC4)
DATA OPTION/‘REALNUMBER’. < INTEGER‘.
2 /REALNUMBER! , * INTEGER/
CHARACTER TITLEWSC2)/’ X = 37,/ Y = ;¢/
DATA X, Y/D..8./

USTART

UPSET C‘/TERMINATOR’,?;‘2

UQUTLN

UWINDO ¢~1.,5..-1..B.)
UMOVE <B.,-.5)

UPEN! CO.,4.4, ‘LARROW’)D
UMOVE ¢-.5,0.0

UPEN] (4.4,8., ‘LARROW’D
UPEN! <X,Y,’NO‘D

SEEEFFFRes

8

N

CH
&

2
<X, Y

ENI <X, Y, NO‘D

CALL UPRNT! CTITLECI), *TEXT’D
CALL UPRNT1 <X, OPTIONCI))
CALL UPRNTI CTITLEC2), ‘TEXT/D
CALL UPRNT! <Y, OPTIONCIDD
CALL UMOVE <X,YD

CONTINUE

CALL UEND
sSTOP
END

EEE
saed

iv-15

CHAPTER V
GRAPHICAL AND ALPHANUMERIC INPUT

The following section discusses the facilities within GCS that are available for entering
data of a graphical nature. Not all implementations of GCS can be used for such
graphics input. For example, those implementations of GCS running in a batch mode, i.e.,
passive graphics, do not permit graphical input. For these applications, the routines dis-
cussed below are disabled.

For a graphics system to be truly interactive, it is necessary to provide the user with the
ability of communicating information of a strictly graphical nature to his graphics pro-
gram. Graphical input differs from conventional FORTRAN input (i.e., READ, etc) in the
following areas:

A. Graphical input is normally performed as a composite operation involving the
transfer of positional coordinate information from the terminal’s primary
graphic input device (cursor, light pen, etc) in conjunction with a single
character from the keyboard (or other suitable interrupt) which signals the ter-
mination of the input operation.

B. Because of the unique nature of strictly graphical input, standard FORTRAN
input cannot be used in lieu of software which has been specifically designed
for that given purpose.

C. Graphical input does not produce any extraneous output at the graphics ter-
minal when entering information, in contrast with standard FORTRAN free-for-
matted input which alerts the user through the use of a special symbol that
input is requested, and echoes the input information as it is entered.

Positional and Character Graphical Input

The standard positional and character graphics input subroutine implemented within
GCS is UGRIN, which may be called by the following sequence:

CALL UGRIN (X,Y,CHAR)

When UGRIN is invoked, the terminal’s primary graphics input device is activated, and
remains in an enabled state until a character is entered from the keyboard. Upon receipt
of the character, UGRIN stores it into CHAR using standard FORTRAN Hollerith format,
disables the primary input device, and transfers the positional coordinates (in current
units) of the input device at the time the character was entered into X and Y. See Exam-
ple V-1.

Subroutine UAIN functions in the same manner as UGRIN, except that no positional
information is returned. Since the terminal remains in ‘limbo’ while awaiting input from
the user, UAIN provides a convenient method of pausing at desired points during execu-
tion of a graphics program.

CALL UAIN (CHAR)

Aiphanumeric Input (Fortran)

For bulk alphanumeric input used in conjunction with interactive communications and

v-1

coordination activities, standard FORTRAN may be utilized under GCS using the same
criteria outlined in Chapter IV for FORTRAN alphanumeric output; i.e., the terminal must
be placed into the alphanumeric mode through the call to UALPHA before control is
relinquished to the FORTRAN input routines. It should be emphasized, however, that
although FORTRAN input is extremely, convenient, the use of FORTRAN input pro-
cedures significantly reduces the efficiency at which a graphics program executes:
hence, the use of FORTRAN 1/0 should be avoided whenever possible.

Alphanumeric Input (Graphical)

An alternative method of alphanumeric input is provided to the graphics programmer
through subroutine UREAD:

CALL UREAD (X,Y,DATA,COUNT,FLAG)

X and Y are used to specify the starting position (in current units) of where the
alphanumeric input is to be attempted. UREAD will store the edited input into DATA,
based upon one of the four options available to the user through a call of USET prior to
invoking UREAD.

A. TEXT — Under this default option, UREAD will accept and store COUNT
characters into DATA: hence, the user mustinsure that DATA has been suitab-
ly dimensioned to hold the number of characters which have been requested.
Should fewer than COUNT characters be entered as input, UREAD will store
the actual number of characters entered into FLAG, and blank-fill the remain-
ing (COUNT - FLAG) characters of DATA. It should be noted that UREAD does
not append the termination character to the end of the input. Therefore, the
user is responsible for inserting this character via UAPEND if the stringis to be
passed as a parameter to UPRINT or UWRITE.

B. REALNUMBER — This option directs UREAD to edit the alphanumeric input as
a REAL number, and to store the resulting floating-point number into the
single-valued REAL parameter DATA. Should UREAD encounter any illegal
characters during the edit, FLAG will be returned with a negative value, and
DATA will be undefined.

C. INTEGER — As in the case of REALNUMBER, DATA is assumed to be single-
valued and of type REAL. UREAD will edit the alphanumeric input as an
INTEGER, perform an INTEGER to REAL conversion, and store the result into
DATA. The user may check if the operation was successfully performed by
examining FLAG upon return from UREAD.

D. XYCOORDINATES — This option directs UREAD to accept two REAL num-
bers (separated by a comma) as input and to store them into the two element
REAL array, DATA. FLAG is set to reflect the status of the input and editing
operation,.

Under REALNUMBER, INTEGER, and XYCOORDINATES options, COUNT is used to
specify the number of variables which are to be input under that given mode. For exam-
ple, if two integers were desired to be read into DATA at virtual location (0.100.), the
following call to UREAD could be used:

CALL USET (‘INTEGER’)
CALL UREAD (0.,100.,DATA,2.,FLAG)

Under XYCOORDINATES, COUNT designates the number of ordered pairs to be input.

A streamlined version of UREAD is available to the user under GCS through subroutine
UINPUT:

v-2

CALL UINPUT (DATA,COUNT,FLAG,OPTION)

DATA, COUNT and FLAG are interpreted in the same manner as UREAD; OPTION is a
single-valued character variable which specifies the format or mode under which the
input is to be editted and stored into DATA, i.e., TEXT, REALNUMBER, INTEGER, etc. The
UINPUT/UREAD relationship closely parallels UPRNT1/UPRINT in that the operation is
performed at the current beam position, and the effects of OPTION are purged from the
GCS upon exit from the subroutine. See Example V-2,

Menued Graphlcal Input

Aside from entering positional information which directs the generation of a display, the
bulk of most interactive input requirements centers upon the ability to select one of
several options which are ‘menued’ before the user. Menuing represents a very attrac-
tive means of user interaction due to the inherent simplicity of the required user
response -- one need only position the graphic input device within the square of the
menuboard which represents the desired option, and depress a character on the
keyboard to transmit the selection to the user's program.

Within GCS, graphical input, by means of a menuboard, is facilitated through the use of
subroutine UMENU, which is called by the following sequence:

CALL UMENU (PTSIN,LABELS,CHOICE)

The absolute value of PTSIN represents the number of menu options that will be pro-
vided (maximum of 10); LABELS is a character array containing one entry of up to eight
characters which is to be printed under each menu option; and CHOICE is a single-
valued output REAL variable, assigned a value by UMENU which indicates the box num-
ber of the option which the user has selected. When UMENU is called with a positive
value of PTSIN, a menuboard is drawn, and the graphic input device is enabled. A nega-
tive value of PTSIN merely enables the input device and inhibits the redrawing of the
menuboard. See Example V-3.

Drafting-Type Graphical Input

The three GCS graphical input subroutines described in this chapter represent a core
around which many sophisticated interactive graphical programs may be designed.

There exists one additional GCS graphical input subroutine, UDRIN, which permits high-
level drafting-type activities to be performed under program control; in addition, the
result of the man/machine interaction may be saved and recalled during future interac-
tions.

CALL UDRIN(X,Y,CHAR)

Interested users are directed to the GCS Programmer’s Reference Manual for further
discussion.

O 000000

OO0 000 000 000 000

SAMPLE PROGRAM WHICH ILLUSTRATES GRAPHICS INPUT APPLICATION
THROUGH'UGWNCTHREETYPESOFCASESAREHANDLED:SOLWVS
INVISIBLE 'I', AND DASHED 'D’ LINES. THE DESIRED OPTION FOR THE LINE IS
ENTERED AS A SINGLE CHARACTER WHEN THE CURSORS HAVE BEEN
POSITIONED. DEFAULT VALUES OF WINDOW, DEVICE AREA, AND DASH
SPECIFICATION ARE USED. AN ‘E' WILL TERMINATE THE PROGRAM.
CHARACTER CHAR*1

CALL USTART

CALL UOUTLN

ENABLES CURSORS, OBTAIN (X,Y) COORDINATES, AND THE CHARACTER.
CALL UGRIN (X,Y,CHAR)
CHECKFORAREOUESTFORASOLWHJNETOBEDRAWNTO(KYl

IF (CHAREQ.'S') CALL UPEN1 (X,Y,'LINE’)

CHECK FOR A REQUEST FOR AN INVISIBLE LINE (MOVE) TO (X.Y).

IF (CHAR.EQ.'I'' CALL UMOVE (X,Y)

CHECK FOR A REQUEST TO DRAW A DASHED LINE TO POINT (X,Y).

IF (CHAR.EQ.'D') CALL UPEN1 (X,Y,'DASH’)
CHECKIFTHEUSERDESHESTOTERMWMJECURRENTGCSPROGRAM.
IF (CHAR.EQ.E') GO TO 2

GOTO 1

CALL UEND

STOP
END

EXAMPLE V-1

3

Y, ‘LINE’)
‘DASH?)

*

Siiiis

l\ccc

kikhEB

-
wmm

v-5

OO0 elololoXoXoNoXoXe]

COOO00 0000

SAMPLE PROGRAM USED TO ILLUSTRATE APPLICATION OF SUBROUTINE
‘UMENU’. THE CHARACTER ARRAY ‘OPTION’ CONTAINS THE LABELS TO BE
PRINTED UNDER EACH OF THE MENU SELECTION BOXES. THE NUMBER OF
THE BOX WHICH WAS SELECTED BY THE USER IS RETURNED IN THE
PARAMETER ‘CHOICE'. THE DEFAULT VALUES OF VIRTUAL WINDOW AND
DEVICE AREA ARE USED.

INITIALIZE LABELS FOR THE MENU CHOICES

CHARACTER OPTION*8(9)

DATA OPTION/‘OPTION 1°,‘OPTION 2’,‘OPTION 3','OPTION 4’, 'OPTION 5,
‘OPTION €', 'OPTION 7’,‘OPTION 8’,'OPTION 9’/

ENTER GCS

CALL USTART
CALL UOUTLN

CALL 'UMENU’ TO DRAW THE MENUBOARD OF 9 OPTIONS AND ACCEPT THE
USER'S SELECTION

CALL UMENU (9.0, OPTION, CHOICE)

CALL 'UMENU’ ONCE AGAIN, BUT USE A MINUS SIGN (-) TO SPECIFY THAT
THE MENUBOARD IS NOT TO BE REDRAWN, BUT THAT THE USER IS TO INPUT
ANOTHER CHOICE (OR REENTER AN EARLIER ONE)

CALL UMENU (-9.0, OPTION, CHOICE)

CALL UEND

STOP
END

EXAMPLE V-2

V-6

CHARACTER OPTIONwECR)

‘DATA OPTION//OPTION 17,/0PTION 27, /OPTION 9/, /OPTION 4/,

/OPTION 67, /OPTION 6. 70PTION 7, /OPTION 8/,
“OPTION 8‘/

v-7

(eXoNoXe COO0O0O00

OO0 0000

(oNo X OO0

OO0

SAMPLE PROGRAM USED TO ILLUSTRATE APPLICATION OF SUBROUTINE
‘UINPUT' TO ACCEPT ALPHANUMERIC INPUT FROM A USER, EDIT IT INTO THE
PROPER FORMAT, STORE IT INTO A DATA ARRAY, & PRINT THE DATA ARRAY
AT ADIFFERENT LOCATION ON THE DISPLAN.

DEFINE AND INITIALIZE DATA ARRAYS USED IN THIS GCS EXAMPLE

CHARACTER OPTION*12(4)

DIMENSION COUNT(4), DATA(6),INDEX (4)

DATA COUNT, INDEX,X,Y/5.,1.,1.,1.,1,3,4,5,5.90./

DATA OPTION/'TEXT'‘REALNUMBER’, INTEGER','’XYCOORDINATE'/

ENTER GCS, OUTLINE DEFAULT VIRTUAL WINDOW, AND DEFINE LOOP TO
ILLUSTRATE THE FOUR INPUT AND OUTPUT OPTIONS.

CALL USTART

CALL UPSET (‘TERMINATOR',":")
CALL UOUTLN

DO11=1,4

POSITION BEAM/PEN TO PROPER LOCATION PRIOR TO PRINTING OF A
PROMPTING MESSAGE.

CALL UMOVE (X,Y)

ALERT THE USER THAT INPUT IS DESIRED, THEN ACCEPT THE DATA
CALL UPRNT1 (‘ENTER: ; ‘TEXT’)

CALL UINPUT (DATA(INDEX(1)), COUNT(2), FLAG, OPTION(2))

OUTPUT DATA

IF(1.EQ.1) CALL UAPEND (COUNT(I), DATA (1)), DATA(INDEX(1))
CALL USET (OPTION(l))

CALL UPRINT (X,10.,DATA(INDEX()))

UPDATE COORDINATE LOCATIONS FOR NEXT ATTEMPT AT A/N INPUT
X=X+225

Y=Y-20.

CONTINUE

WRAP-UP GRAPHICS ACTIVITY, & TERMINATE THE FORTRAN PROGRAM.
CALL UEND

STOP
END

EXAMPLE V-3

v-8

ENTER: SREETINSS

ENTER: {.284E+{0

ENTER: -{23456788

ENTER:s 1.2,38.4

SREET . 1284E+i ~1234656788 (1.2,3.4)

CHARACTER OPTION®12C4)
DIMENSION COUNTC4).DATACG), INDEXC4D
DATA COUNT, INDEX, X,Y/S.,l.,l.,l.,l S,4,5,6.,809./
DATA OPTION/‘TEXT’ ‘REALNUMBER’, ?INTESER? , “XYCOORDINATE/
CALL USTART
CALL UPSET C‘TERMINATOR’, ‘72
CALL UQUTLN
DO 1 I =1,
CALL UMOVE (X Y2
CALL UPRNT! C7ENTER: 37, “TEXT’D
CALL UINPUT CDATACINDEXCID), COUNTCID, FLAS, OPTIONCID)
IFCI.EQ.1> CALL UAPENDCCOUNTC1), DATACINDEXC1YY, DATACINDEXC1))
CALL USET COPTIONCID)
gALLxUPRINT CX, 18, , DATACINDEXCIDDD
- X «
YooV~
CONTIMJE
CALL UEND
STOP
END

v-9

CHAPTER VI
GCS UTILITY SUBROUTINES

To assist the user in preparing his graphical applications, GCS has incorporated a series
of comprehensive, yet easy to use utility subroutines which permit the programmer to
generate:

A. Circles and circular arcs

B. Regular polygons and other straight-sided geometric figures
C. Conic sections
D

Linear and least-squares polynominal curve fits to a series of user-supplied
data points.

All of the GCS utility routines which generate graphical output perform their activities
within the environment established by the user at the time they were invoked; hence,
such output will be constrained by such parameters as the virtual window and device
area, current units and mode of addressing, line type and terminator, together with any
rotational and scaling factors specified by the user.

Circles

One of the most common requirements of scientific and engineering graphical applica-
tions is fo the generation of circles and circular arcs. Provision for this capability under
GCS is available through subroutines UCRCLE and UARC.

Circles may be generated through subroutine UCRCLE which is called by the following
sequence:

CALL UCRCLE (X,Y,RADIUS)

X and Y are used to specify the coordinates (in current units) of the center of the circle of
radius, RADIUS, which will be approximated by a series of line segments forming a many-
sided equilateral polygon, whose peak deviation from an ideal circle is approximately 1.4
thousandths of the ideal circle's radius. This error is normally comparable in magnitude
to the raster spacing of the plotting device, and should prove adequate under most con-
ditions. Example VI-1 demonstrates the use of UCRCLE.

Circular Arcs

Circular arcs may be generated through subroutine UARC which is called by the follow-
ing sequence:

CALL UARC (X,Y,ANGLE)

Upon invocation, UARC will generate an arc beginning at the current beam position and
of angular span ANGLE. The radius of the arcis determined through computation of the
distance from the center of the arc (specified by X and Y) and the beam position prior to
entry into the subroutine. Upon exit, UARC will leave the beam at the last point of the
angular segment it has generated. For example, if all default conditions are in effect, the
current beam position is at (40.0,50.0), and UARC is invoked with the following
parameters:

vi-1

CALL UARC (40.0,20.0,90.0)

UARC will generate a circular arc having a center at (40.0,20.0), with a radius of 30.0, and
angular span of 90.0 degrees. The arc will begin at (40.0,50.0) and terminate at
(10.0,20.0). See Example VI-2.

Should the user be at a terminal which has the capability to generate circles and circular
arcs via hardware, UCRCLE and UARC will utilize such facilities when they are invoked.,

Regular Polygons

Polygon and other straight-sided geometric figure generation is provided through
subroutines UPLYGN and URECT. Subroutine URECT may be utilized when a reac-
tangle, which spansthe area defined by the current beam position and coordinates (X,Y),
is desired. Should URECT be called under the RELATIVE mode of addressing, any rota-
tional or scaling parameters which may apply will dictate the rotation or scaling of the
rectangle about the current beam position.

CALL RECT(X,Y)

Provision for the generation of equilateral (regular) polygons is available under GCS
through UPLYGN which may be called by the following sequence;

CALL UPLYGN (X,Y,PTS,RADIUS)

X and Y denote the coordinates of the center of the polygon, PTS is the number of sides
which is to comprise the figure, and RADIUS is used to define the radius of the circle
within which the polygon is inscribed. With no relative rotation specified, the polygon
will be drawn with one side parallel to the bottom of the plotting area. Should relative
rotation be specified, this “base” side will be rotated by the given angle of rotation. In
contrast to URECT, UPLYGN'’s axis of rotation is defined by (X,Y) as opposed to the beam
position upon entry to the subroutine. Examples VI-3 through VI-6 demonstrate the use
of UPLYGN and URECT and illustrates some of the principles of rotation and line options.

Conic Sectlons
A particularly useful subroutine which may be used to draw all (or part) of a generalized
conic section having a given focus, directrix, eccentricity, and angular span is available
through the following calling sequence:
CALL UCONIC (X,Y,P,E,THETA1,THETA2)
(X,Y) are used to specify the coordinates of the focus of the conic section; P is the dis-
tance from the focus to the directrix: E is the eccentricity, THETA1 and THETA2 repre-
sent the initial and final angles through which the conic section is to be drawn.
Parameters E and P affect the generation of the conic section in the following manner;
A. E=0 will draw a circular arc with a center at (X,Y) and radius P/
2. The arc will subtend the angular range defined by
THETA1 and THETA2.
B. OLTABS(E).LT.1 will generate an ellipse.
C. ABS(E)=1 will specify a parabola.

D. ABS(E).GT.1 designates that a hyperbola is to be drawn.

vi-2

E. E.GT.O indicates that the major axis of the conic section is to be
oriented parallel to the X-axis.

F. ELT.O specifies that the major axis is to be oriented along the Y-
axis.
G. PGTO defines the position of the focus to be to the right of (or

below) the directrix.

H. PLT.O indicates that the focus is positioned to the left of (or
above) the directrix.

Examples VI-7 and VI-8 demonstrate the use of UCONIC.

Curve Fitting

For those users who desire to combine data analysis through curve fitting into their
graphical applications, subroutines ULINFT and ULSTSQ should provde of particular
importance. ULINFT should be used when it is desired to obtain the slope (S) and Y-
intercept (YI) of the linear equation, Y = SX + Y|, which represents the least-squares
linear fit to a number (XN) of user-supplied data points (contained in arrays X and Y).
ULINFT may be called by the following sequence:

CALL ULINFT (X,Y,SN,S,YI)
See Example VI-S.

Subroutine ULSTSQ should be used when a ‘least-squares’ polynominal curve fit is
desired. ULSTSQ returns the N+ 1 coefficients of the polynominal of degree N which
represents the ‘best’ in the sense of least-square fit to a series of user-supplied data
points. ULSTSQ may be invoked by:

CALL ULSTSQ (X,Y,XN,COEFF)

where X is a user-supplied array containing XN values of the independent variable; Y is
an array of XN values for the dependent variable; XN is the number of values in each of
the X and Y arrays; and COEFF is an output array which contains the N+ 1 coefficients of
the polynominal which was fitted to the data. In order to specify the degree of the
polynominal which is to be fitted to the data, it is necessary to call UPSET before
ULSTSQ is invoked. For the generalized case outlined above, a suitable call to UPSET
would be:

CALL UPSET (‘POLYNOMINAL’,FLOAT(N))
See Example VI-10.
Development of Applications Library
There is one additional curve fitting routine available, USPLIN. This routine does a cubic
spline fit to a series of data points. The quality of fit is established by the nature of the
cubic spline function. The user is referred to the GCS programmer’s reference manual.

CALL USPLIN(X,Y,XN,RX,RY,RN)

The subroutines discussed in this chapter represent a group of software which may be
viewed as a minature applications library.

vi-3

OCO00O0O0

oXoloNoXe

OO0

SAMPLE PROGRAM USED TO ILLUSTRATE SIMPLE APPLICATION OF THE
SUBROUTINE ‘UCRCLE’. DEFAULT VIRTUAL WINDOW AND DEVICE AREA IS
USED. NOTE THE EFFECT OF ‘SCISSORING’ DUE TO THE VIRTUAL WINDOW’S
RESTRICTING OF ALL GRAPHICAL INFORMATION TO RESIDE WITHIN THE
REGION DEFINED BY A 100.-BY-100. SQUARE.

CALLUSTART
CALL UOUTLN

DRAW CIRCLES WITH CENTERS AT CORNER OF THE VIRTUAL WINDOW, AND
CENTERS AT THE MIDDLE OF EACH OF THE WINDOW BOUNDARIES. ALL OF
THESE CIRCLES HAVE A RADIUS OF 50.

CALL UCRCLE
CALLUCRCLE
CALL UCRCLE
CALL UCRCLE
CALL UCRCLE
CALLUCRCLE
CALL UCRCLE
CALL UCRCLE

0.0.50.)
50.,0.,50.)
100.,0.50.)
100.,50.,50.)
100.,100.,50.)
50.100.,50.)
0.100.50.)
0..50.50.)

o o o, o, o,

DRAW A CIRCLE OF RADIUS 20.7 WITH A CENTER AT (50.,50)).
CALL UCRCLE (50.50.,20.7)
CALL UEND

STOP
END

EXAMPLE VI-1

vi-4

SLVN
Pat Vet

CALL USTART

CAlL UOUTLN

CALL UCRCLE 0..3..50 b
CALL UCRCLE ¢68.,8.,58.0

CALL UCRCLE ¢189.,8.,58.)
CALL UCRCLE C182.,68.,58.)
CALL UCRCLE ¢108.,108.,68.)

UCRCLE ..1e2..68.>
CALL UCRCLE ¢8..188.,68.)
CALL UCRCLE ¢@..58.,68.)
CALL UCRCLE ¢689.,59.,28.7)
CALL UEND

;

&

OO0

OO0

O0000 O 00

SAMPLE PROGRAM USED TO DEMONSTRATE THE USE OF SUBROUTINE
"URAC’ TO DRAW AN ARC CENTERED AT (40.,20.) AND OF RADIUS 30.0. THE
ARC WILL BEGIN AT (40.50.), AND TERMINATE AT (10,20)).

CALL USTART
CALL UOUTLN

MOVE TO WHERE THE ARC IS TO BEGIN AND LABEL THE POSITION.

CALL UPEN1 (40.0,50.0, 'NCOORDINATES')
CALL UMOVE

CALL 'UARC’' TO GENERATE AN ARC WHOSE CENTER IS (40,20.), SPANNING
AN ANGULAR INTERVAL OF 90 DEGREES.

CALL UARC (40.0,20.0,90.0)

DETERMINE WHERE 'UARC’ HAS LEFT THE BEAM, THEN PRINT THE
COORDINATES OF THIS LOCATION. ALSO PRINT THE COORDINATE OF THE
CENTER OF THE ARC

CALL UWHERE (X,Y)

CALL UPEN1 (X,Y,NCOORDINATES')
CALL UPENT1 (40.0,20.0,NCOORDINATES’)
CALL UEND

STOP

END

EXAMPLE VI-2

vi-6

40.,50.)

C48.,208.0

ie.,20.0

.8)
.8,
‘NCOgRDINA

.2,58.8, NCOORDINATES?)
58
?n .2
TES’)
?NCOORDINA

<
(“.a
49.9

sEEbelits
PEEPPEPEELT

vi-7

OO0 0000000

oNoXe

OO0 0000 000 0000 0000

SAMPLE PROGRAM USED TO DEMONSTRATE USE OF SUBROUTINE
‘UPLYGN’. POLYGONS OF FROM 2 TO 9 SIDES WILL BE DRAWN WITHIN THEIR
OWN WINDOW, WHICH IS MAPPED TO DIFFERENT PORTIONS OF THE

SCREEN OF A TEKTRONIX 4010/4013 TERMINAL.

PRESET NUMBER OF SIDES OF POLYGON =1, ‘INITIAL Y HEIGHT = 4.7
DATA SIDES YO/1.0,4.7/

START GCS. SET VIRTUAL WINDOW TO XMIN=-1.1 XMAX=+1.1 YMIN=-1.1
YMAX=+1.1. ADEVICE PLOTTING AREA WILL BE DEFINED 8 TIMES: 2ROWS
OF 4, EACH TIME CONTAINING A DIFFERENT POLYGON AND WITH THE
DEVICE PLOTTING AREA OUTLINED.

CALL USTART
CALL UPSET (‘TERMINATOR, *:’)
CALL UWINDO (-1.1,1.1,-1.1,1.1)

THE FOLLOWING DO-LOOPS SET UP THE 2 ROWS OF 4 DISPLAYS
DO11=1,2

X=15

YO=YO0-1.8

DO1J=14

X0-XO0+1.8

INITIALIZE NUMBER OF SIDES, 1 IS ADDED BEFORE EACH EXECUTION SO
POLYGON SIDES START AT2AND GO TO 9 IN8 STEPS

SIDES=SIDES+1.0

NOW ACTUALLY SET UP THE DEVICE PLOTTING AREA AS XO AND YO
CHANGE IT WILL MOVE TO 8 DIFFERENT LOCATIONS

CALL UDAREA (XO,(XO+1.5),YO,(YO+1.5))
AT EACH LOCATION OUTLINE IT
CALL UOUTLN

CALL ‘UPLYGN' TO DRAW THE POLYGON WITHIN THE DEVICE AREA WE HAVE
DEFINED, THEN ADD SOME LABELING VIA CALLS TO ‘UPRINT".

CALL UPLYGN (0.0,0.0,SIDES,1.0)
LABEL DRAWING

CALL USET (‘TEXT)

CALL UPRINT (-1.0,-1.05,'SIDES;’)
CALL USET (‘INTEGER’)

CALL UPRINT (0.9,-1.05,SIDES)
CONTINUE

CALL UEND

STOP

END

EXAMPLE VI-3

vi-8

OOI0IO

1.8,4.7/

TERMINATORY, /3/)

DATA SIDES
CALL USTARY

CALLLPSET(‘

“o‘o"‘"“o'>

L]
|l

CALLUHDDO(—II

.5J,Y8,CYR+1.60)

.8
CXD-H

-

mm

I-YJm-w

mmwm
FEEMMAR FEEEEEE

~n
~
-
aY L.d
®
L4 n
-
A
~
«
hd
° -)x
-] -y
. [} -
B) —
*%
0 9
0 —
(V4
~ ~

vi-9

oXoNe OO0 O 00000

OO0

(oXoXoNe

SAMPLE PROGRAM USED TO DEMONSTRATE USE OF SUBROUTINE
'UPLYGN'. A TRIANGLE WILL BE DRAWN USING 1 OF 12 POSSIBLE PEN
OPTIONS ON A TETRONIX 4010/4013 TERMINAL.

LOAD A CHARACTER ARRAY WITH OPTIONS TO BE USED BY USET AND
UPRINT '

CHARACTER OPTION*16(12)

DATA INDEX,YO,OPTION/0.5,6,"LNULL;’, 'LARROW:, 'LBACKARROW;’
‘LDOUBLEARROW;’,'DNULL;’,'DARROW:’, ‘'DBACKARROW;’,
'DOUBLEARROW;’, 'TNULL;,'TARROW:, 'TBACKARROW;', ' TDOUBLARROW:'/

ENTER GCS, DEFINE VIRTUAL WINDOW.

CALL USTART

CALL UPSET ('TICINTERVAL’, 0.25)
CALL UPSET ('TERMINATOR’,";")
CALL UWINDO (-1.1,1.1,-1.1,1.1)

DRAW FIGURES IN THREE ROWS OF FOUR.

DO11=1,3
X0=1.5
YO=YO-1.8
DO1J=14
XO0=X0+1.8
INDEX=INDEX+ 1

DEFINE DEVICE AREA SO THAT ONLY ONE POLYGON WILL BE DRAWN.

CALL UDAREA (XO,(XO+1.5),YO,(YO+1.5))
CALL UOUTLN

CALL 'UPLYGN' TO DRAW THE POLYGON WITHIN THE DEVICE AREA WE HAVE
DEFINED USING ONE OF THE TWELVE POSSIBLE PEN OPTIONS.

CALL USET (OPTION(INDEX))

CALL UPLYGN (0.,0.0,3.0,1.0)

CALL UPRINT (-1.0,-1.0,0PTION(INDEX))
CONTINUE

CALL UEND

STOP

END

EXAMPLE VI-4

vi-10

LNULL LARROU LBACKARROW LDOUBLEARROW
/\ R N /"’\
7\ 7\ 7\ \
/ N / N / / .
PSR I ISR I g I § e
DNULL DARROWY DEACKARRDW DDOUBLEARROUW
THULL TARROW TRACKARROW TDOUBLEARRDW

CHARACTER OFTION®16C12)

DATA INDEX, YO/8
DATA OPTION/® LNULL

e

USTART
UPSET
UPSET ¢
UWINDO
-1.8

J = |,
Xﬁ-o-l

?????EEEE

(l

.B. 6/
'DNULL;' 'DARROH}‘ ’DBACKARROH

CKARROH}‘, * LDOUBLEARROW; “ ‘e

* DDOUBL.EARROW; ¢
STNULL; “, “ TARROW; 7, ’TBACKARROHJ’ ’TDO’.BLEARROV}‘/

TERMINATOR’, 73 ‘0
TICINTERVAL’, 8.26)
C-1.1,1.1,-1.1,1.1D

I=1,3

Y2 —- 1.8
4

vi-11

OO0 00000

OO0

oNeoNoX@)

SAMPLE PROGRAM USED TO DEMONSTRATE USE OF SUBROUTINE
‘UPLYGN'. ATRIANGLE WILL BE DRAWN IN RELATIVE MODE AND ROTATED
ABOUT ITS CENTER IN TEN DEGREE INCREMENTS ON A TEKTRONIX 4010/
4013 TERMINAL.

DATA DEGREE,Y0/0.0,5.563/
ENTER GCS, DEFINE VIRTUAL WINDOW, AND PEN OPTIONS

CALLUSTART

CALL UWINDO (-1.1,1.1,-1.1,1.1)
CALL USET (‘INTEGER)

CALL USET (‘LARROW)
DO11=1,3

X0=-15

YO=Y0O-1.8

DO1J=1,4

X0=X0+1.8
DEGREE=DEGREE+10.0

DEFINE DEVICE AREA SO THAT ONLY ONE POLYGON WILL BE DRAWN

CALL UDAREA (XO,(XO+1.5),YO,(YO+1.5)
CALLUOUTLN

CALL ‘UPLYGN' TO DRAW THE POLYGON WITHIN THE DEVICE AREA WE HAVE

DEFINED. ROTATING IT IN RELATIVE MODE BY TEN DEGREES.

CALL UMOVE (0.0,0.0)

CALL USET (‘RELATIVE’)

CALL UPSET (‘ROTATE’ DEGREE)
CALL UPLYGN (0.0,0.0,3.0,1.0)
CALL USET (‘tABSOLUTE’)

CALL UPRINT (-1.0,-1.0,DEGREE)
CONTINUE

CALL UEND

STOP

END

EXAMPLE VI-5

vi-12

18 28 38 42
50 88 78 88
88 108 118 129

DATA DEBREE, Y2/8.8,5.563/
USTART

CALL UNIMDO C-1.1,1
CALL USET C‘/INTEGER

;

CALL USET C’LARROW’D

58sE3
L Kol B R
et

;

:

EEEFRFFF
2

23§§

i

¢
{
i,
{

;

E

~27n

N0 W

DEGREE + 18
AREA (X8, CXBe

50.8,8.83

ol‘-lol‘lol)
9

.B
1.50,Y8, Y81 .53

TIVE’)

RELA
C/ROTATE’ ,DEGREE)D
(8.8,8.8,3.8,1.8
ABSOLUTE?)

UPRINT (~-1.8,-1.8,DEGREE)

4

vi-13

OO0 00000

OO0

OO0

(oXoXeoXe]

SAMPLE PROGRAM USED TO DEMONSTRATE USE OF SUBROUTINE ‘URECT".
A RECTANGLE WILL BE DRAWN IN RELATIVE MODE WITH A ROTATIONAL
INCREMENT OF THIRTY DEGREES APPLIED TO SUBSEQUENT CASESON A
TEKTRONIX 4010/4013 TERMINAL.

DATA DEGREE,Y0/0.0,5.63/
ENTER GCS, SET VIRTUAL WINDOW, SET INTEGER MODE

CALL USTART
CALLUWINDO (-1.1,1.1,-1.1,1.1)
CALL USET ('INTEGER)

LOOP THROUGH PROGRAM, CHANGING LOCATION OF FIGURE BY
INCREMENTING THE LOCATIO NBY A FIXED AMOUNT.

DO11=1,3

X0=-15

YO=Y0O-1.8

DO1J=14

XO0=X0+1.8
DEGREE=DEGREE+30.0

DEFINE DEVICE AREA SO THAT ONLY ONE RECTANGLE WILL BE DRAWN.

CALL UDAREA (XO,(XO+1.5), YO,(YO+1.5))
CALL UOUTLN

CALL ‘URECT' TO DRAW THE RECTANGLE WITHIN THE DEVICE AREA WE
HAVE DEFINED, ROTATING IT IN RELATIVE MODE BY THIRTY DEGREES.

CALL UMOVE (0.0,0.0)

CALL USET (‘RELATIVE’)

CALL UPSET (‘(ROTATE' DEGREE)
CALL URECT (0.8,0.6)

CALL USET (‘fABSOLUTE)

CALL UPRINT (-1.0,-1.0,DEGREE)
CONTINUE

CALL UEND

STOP

END

EXAMPLE VI-6

vi-14

168

188 218 : 248

278

Q

23&’&&;&&&&&

DATA DEBREE Ya/8.8,5.63/
CALLUHINDO C-t.1,8.4,~-1.1,1.10
INTEGER?)

?é

DEG!EE + $8.0
LDAREA (X8, (Xo+1.65),Y8, CYD+{ .BDD

E €2.9,08.8)
C‘RELATIVE’)
C‘ROTATE’ ,DEBREE)D
€0.8,8.8)

¢’ ABSOLUTE?)D

m C—‘ oao"‘ .B.M)

3

&
9

Bg

vi-15

OO0 oo loNoXoRoXoloNoX®)

OO0

O0000

SAMPLE PROGRAM USED TO ILLUSTRATE APPLICATION OF ‘UCONIC’' TO
GENERATE ELLIPSES AND HYPERBOLAE. FOUR FIGURES WILL BE DRAWN:
2ELLIPSES ORIENGED ALONG THE ‘X’ AND ‘Y’ AXES; AND 2 HYPERBOLAE
ORIENTED ALONG THE ‘X' AND 'Y’ AXES. EACH ONE OF THE FIGURES IS
DRAWN WITHIN ITS OWN REGION OF THE SCREEN BY REDEFINING THE
DEVICE AREA PRIOR TO DRAWING THE FIGURE ON A TEKTRONIX 4010/4013
TERMINAL.

SET UP DATA ARRAYS FOR UCONIC

DIMENSION X(4),Y(4),P(4) E(4)
DATA INDEX,YO,X,Y,P,E/
0,5.73,10.,50.,67.,40,50,10.50.,67,9.5-9.5,9.,-8.,.9,-.9,1.44 -1.44/

ENTER GCS

CALL USTART
DO11=1,2
X0=1.82
YO=YO0O-2.86
DO1J=1,2
XO=X0+2.86
INDEX=INDEX + 1

DEFINE DEVICE AREA SO THAT ONLY ONE FIGURE WILL BE DRAWN.

CALL UDAREA (X0,(X0+2.57),YO,(YO+2.57)
CALL UOUTLN

CALL UCONIC TO DRAW THE FIGURE USING THE PARAMETERS STORED IN
ARRAYS 'X','Y''P’, AND ‘E'. NOTE THAT DEFAULT VIRTUAL WINDOW IS
MAPPED TO THE CURRENT DEVICE AREA SPECIFICATION.

CALL UCONIC (X(INDEX),Y(INDEX),P(INDEX),E(INDEX),0.0,360.0)
CONTINUE

CALL UEND

STOP

END

EXAMPLE VI-7

vi-16

X4

DINENSION XC4),YC4) ,PC4), EC4D
DATA :uoex,vn,&.Y.P.E/a.g.zg,

18..,60..67.,58.,60..18,.,50.,867.,
5,9.,-9..,.8,-.8,1.44,-1 .44/

;
§
;

« &
=
.

58558
1-11-

C.ng
L} 1
N N
gng

INDEX « |
AREA CXB,CX0+2.57),Y8, CYB+2.670)

. YCINDEX), PCINDEX) , ECINDEXD, 0.8,360.80

235
gg%:
%

S
5t

vi-17

COO0OO00OO0

OO0

OO0

OO0000

SAMPLE PROGRAM USED TO ILLUSTRATE APPLICATION OF ‘UCONIC’ TO
GENERATE PARABOLAE. FOUR FIGURES WILL BE DRAWN: 2 WILL BE
ORIENTED ALONG THE '+ X' AND ‘+ Y’ AXES, AND 2 WILL BE ORIENTED
ALONG THE ‘-X’ AND ‘-Y' AXES. EACH ONE OF THE PARABOLAE IS DRAWN
WITHIN ITS OWN REGION OF THE SCREEN BY REDEFINING THE DEVICE AREA
PRIOR TO DRAWING THE FIGURE ON A TEKTRONIX 4010/4013 TERMINAL.

DIMENSION X(4),Y(4),P(4)
DATA INDEX,YO,X,Y,P,E/
0.6.73,10.50.90,50.50.,10.50,90.,13.-13.,-13.,13.,1.,-1.,1 W17

ENTER GCS

CALL USTART
DO11=1,2
X0=1.82
YO=Y0-2.86
DO1J=12
XO=X0+2.86
INDEX=INDEX+1

DEFINE DEVICE AREA SO THAT ONLY ONE FIGURE WILL BE DRAWN.

CALL UDAREA (XO,(X0+2.57),YO,(YO+2.57))
CALL UOUTLN

CALL UCONIC TO DRAW THE FIGURE USING THE PARAMETERS STORED IN
ARRAYS 'X''Y",'P’, AND ‘E’. NOTE THAT DEFAULT VIRTUAL WINDOW IS
MAPPED TO THE CURRENT DEVICE AREA SPECIFICATION.

CALL UCONIC (X(INDEX),Y(INDEX),P(INDEX), E(INDEX),0.0,360.)
CONTINUE

CALL UEND

STOP

END

EXAMPLE vI-8

vi-18

DINENSION XC4),YC4),PC4d, EC4D
DATA INDEX.Y®,X.Y.P.E/8,6.73,18. 58.,98. 60.,50..12. 50..88.,
13..-18.,-13.,13.,1.,-1.,1.,-1./

INDEX = INDEX + 1
CALL UDAREA CXB,(XB+2.57),Y8,<YR+2.6750

CALL UCONIC CX(INDEX),Y(INDD(),P(I}DEX),ECINDEX),G.O,SO0.0)
CONTINUE
CALL UEND

STOP
END

vi-19

OO0 OO0 OO000O0

OO0 000

SAMPLE PROGRAM USED TO ILLUSTRATE APPLICATION OF ‘ULINFT' TO
CALCULATE THE SLOPE (S) AND Y-INTERCEPT (Y1) OF A LINE WHICH
REPRESENTS THE ‘BEST' LINEARFIT TO A SERIES OF DATA POINTS.
DEFAULT VALUES OF VIRTUAL WINDOW, DEVICE AREA, AND LINE TYPE ARE
USED.

DIMENSION X(20), Y(20)

DATA X/0.5.,10. 15, 20, 25,30, 35., 40., 45, 50., 55.,60.,65.,70.,75.,80, 85,
90,95/

DATAY/20,25.,30,35., 30, 25,20, 15,10, 15, 20, 25,30, 35,40, 45,50, 55.,
60.,65./

ENTER GCS, DRAW OUTLINE

CALL USTART
CALL UOUTLN
CALLUSET (‘'N+")
DO11=1,20
XN=FLOAT())

AND PLOT EACH DATA POINT WITHA ‘+,

CALL UPEN (X(1),Y (1))
CONTINUE
CALL USET (‘LINE’)

CALL 'ULINFT' TO CALCULATE THE LINE'S SLOPE AND Y-INTERCEPT.
CALL ULINFT (X,Y,XN,S,YI)
MOVE TO THE Y-INTERCEPT THEN GRAPH THE LINE USING YO=S8X+YI.

XMIN=0.0
XMAX=100.0

CALL UMOVE (XMIN,Y1)
YO=YI|+S*MAX

CALL UPEN (XMAX,YO)
CALL UEND

STOP

END

EXAMPLE VI-9

vi-20

DIMENSION X<28),Y(20)

DATA X/2..6.,18.,16.,28..,25

& -‘“-‘ -‘“-‘ 'y

DATA Y/2..,7..18.,14.,25.,24
m.,m.,s’.,o‘.,7 o9

USTART

:
| |

CXCID,YCIDD
C°LINE?’D

CX, Y, XN, 8,YD

LELLE

it

-

CXMIN, YIO
8 » XMAX
CXMAX, YD

EERIREERISEE

S3EFT
3378

vi-21

oNoNoloXoNoXeoXe)

OO0

OO0

OO0

SAMPLE PROGRAM USED TO ILLUSTRATE APPLICATION OF ‘ULSTSQ’' TO
CALCULATE THE COEFFICIENTS OF A POLYNOMIAL OF ORDER IDEGRE-1
WHICH REPRESENTS THE ‘BEST' FIT TO A SERIES OF DATA POINTS.
DEFAULT VALUES OF VIRTUAL WINDOW, DEVICE AREA, AND LINE TYPE ARE
USED. EACH OF THE DATA POINTS ARE PLOTTED WITH A ‘+’. AFTER
‘ULSTSQ' IS CALLED, THE POLYNOMIAL IS THEN GRAPHED, USING THE
COEFFICIENTS WHICH WERE COMPUTED.

PARAMETER IDEGRE=7

DIMENSION A(IDEGRE),X(20),Y(20)
DATAX/0.5.,10, 15,20, 25, 30, 35., 40, 45, 50,
55, 60.,65,70,75.,80.,85.,90.,95./ :
DATA Y/20, 25,30, 35., 30, 25., 20, 15, 10,15, 20,
25,30,35.,40,45,50,55, 60, 65./

ENTER GCS, DRAW QUTLINE, SET TYPE AND DEGREE OF FIT

CALL USTART

CALL UOUTLN

CALL UPSET (‘POLYNOMIAL',FLOAT(IDEGRE-1)
CALLUSET ('N+")

PLOT POINTS

DO2I1=1,20
CALL UPEN (X(1),Y()))
CONTINUE

MOVE PEN TO ORIGIN, COMPUTE LEAST SQUARES LINE

CALL UMOVE (0.0,0.0)
CALLULSTSQ (X,Y,20.A)

PLOT LEAST SQUARES LINE APPROXIMATING POINTS

DO5I1=1,100
YO=A(1)
XO=FLOAT(I)
XK=XO

DO 4 J=2,IDEGREE
YO=A(J)*XK+ YO
XK=XK*X0
CONTINUE

CALL UPEN (X0,YO)
CONTINUE

CALL UEND

STOP

END

EXAMPLE VI-10

vi-22

PARAMETER IDEBRE=7
DINENSION ACIDEGRED, X(28),YC28)

DATA
3
DATA

E..
;i
:

A EE

x/8.,6.,18.,16,,20.,265.,308.,35.,40.,45.,
69.,65.,60.,66.,79.,76.,60.,85.,98.,85./

Y/8.,.8.,28.,32,,46,.,66,,00.,060.,50.,48.,
49, ,37.,95.,37..42.,49.,68,,68.,82,,85./

:

SET C‘POLYNOMIAL‘,FLOATCIDEGRE-1D)
C’ACENTERYD
C/Ne’D

., 28
CXCID, YCIDD

ET C/LINE’D
(8.8,8.2

Q <X, Y,20.,AD

188

383

I =

3

E1hdh

L

o

:
;

vi-23

CHAPTER VI
HIGH LEVEL GRAPHICS

High Levei Piotting Faciiity

UPLOT is a general-purpose composite plotting subroutine which may be used to graph
full-screen representations of complete arrays of data. Through the use of common
default options, UPLOT provides sufficient flexibility to meet the majority of plotting
requirements; however, should the user desire to change any of the applicable options,
UPLOT will permit:

A. Rectangular, semi-logarithmic, log-log, or polar plotting;
B. Automatic or forced scaling of data values;
C. Axes presentation and format options, to include alphanumeric labeling.

UPLOT may be called by the following sequence:
CALL UPLOT (X,Y,CURVES, PARRAY,OPTARY)

CURVES is a single-valued variable which denotes the number of curves to be plotted.
PARRAY is an array which describes the number of data points for each curve; e.g., PAR-
RAY(1) is the number of data points comprising the first curve, PARRAY(2) is the number
of points for the second curve, etc. OPTARY is a character array which specifies the
data presentation format applicable to each given curve. Each element of OPTARY must
not exceed 4 characters in length, and must represent a valid pen-status option such as
‘LINE’, 'VECT’, etc. Since PARRAY and OPTARY follow the same general nomenclature
in describing the characteristics of a given curve, both of these arrays must have as
many elements as there are curves to be plotted. Arrays X and Y contain the actual data
values grouped by curve. The size of the X and Y arrays must be equal to the sum of the
elements of PARRAY. The general format of each of these arrays is outlined in the
following figure.

Contents of Arrays Used in UPLOT

PURPOSE OF PLOT - Plot three curves having 8, 4 and 5 points each

X Y CURVES PARRAY OPTARY
Curve 1 X4 Yy 3 8. ‘LINE’
X0 \ 2P 4. ‘VECT’
X3 Y3 5. ‘DARR’
Xi4 Yi4
X1s Yis
X6 Yis
X7 17
X1g 18
Curve 2 X5 Yo,
22 Ya2
X23 Y23
X2 Yaq

vii-1

Curve 3 X34 Y,
X3z Y32
X33 Yas
X34 Yag
X35 Yss

For those users desiring to plot only a single curve using the current line type, there
exists a special form of UPLOT — UPLOT1 — which has a simplified calling sequence.
UPLOTT1 offers all of the various options available through UPLOT and may be called by
the following sequence:

CALL UPLOT1 (X,Y,PTS)

X and Y are arrays containing the data values to be plotted and PTS is a single-valued
variable indicating the number of points which comprise the curve.

The visual results obtained through UPLOT depend upon the status of the GSA at the
time UPLOT is invoked. All of the high-level graphics parameters are assigned default
values by USTART, and may be modified through conventional calls to USET and UPSET.
Although many of these options will be presented, it is not the intent of this chapter to
discuss each particular option in detail, further information may be found in the GCS
Programmer’s Reference Manual

Coordinate System Options

The two types of coordinate systems applicable to UPLOT are specified through USET in
the following manner:

CALL USET (‘RECTANGULAR’)
CALL USET (‘POLAR))

Under RECTANGULAR coordinates, the user is given the option of specifying linear or
logarithmic mappings of the independent and dependent variables: NOLOGAXES,
XLOGAXES, YLOGAXES and XYLOGAXES, When logarithmic axes are specified, the
user has the option of specifying the base of the logarithmic transform via a call to
UPSET. This can be any real number, with 10. being default or the character string IHE to
denote the base of the Napierian logarithm. The call to UPSET is

CALL UPSET (‘BASE’ base)

where base is the base of the logarithms as described above.

Scaling Options

There are three options applicable to the scaling of data values for a graphical display
under UPLOT: ‘AUTOSCALE’, ‘FULLSCALE’, and ‘OWNSCALE’. Under AUTOSCALE,
the range of values to be plotted is examined and scaling occurs so that the graph will be
presented with ‘nice’ numbers at the tic marks on the axis (if requested). The
FULLSCALE option resembles AUTOSCALE with the exception that ‘nice’ numbers may
not appear. OWNSCALE uses the virtual window established by the user upon entry to
UPLOT in order to scale the data values, hence, a zero-value is not forced on the X-axis.
Thus, ‘nice’ numbers may not necessarily appear as numeric labels, and all of the data
points may not be displayed should they extend beyond the window limits.

vii-2

There are also two options relating to the calculation of the scale factors, ‘NEWSCALEFE’
and ‘OLDSCALE’. With the ‘NEWSCALE' option, the scale factors used to map the data
onto the display screen is always recalculated. Specifying ‘OLDSCALE’ results in this
calculation being bypassed, with the result that a scaling factor used in a previous plot is
used for the current plot. This ofter results in an increase in speed at which the p.>ts are
produced.

General Purpose Axes Creation

Subroutine UAXIS is invoked by subroutine UPLOT to generate the desired axes for the
input data arrays. It is specified:

CALL UAXIS(XMIN,XMAX,YMIN,YMAX)

Axes Optlons

The options which apply to the axes may be further subdivided into the following catego-
ries:

A. Axes existence options.

B. Axes format options.

C. Axes positioning options

D X and Y labeling option.

E. Numeric label format options.

‘XYAXES’, ‘XAXIS' ‘YAXIS’ 4nd ‘NOAXES’ comprise the USET options which specify the
existence of an axis XYAXES indicates that both X and Y axes are to be drawn, whereas
the XAXIS or YAXIS options are be used when only one of the respective axes is desired.
The NOAXES option will suppress the display of the X and Y axes, but will permit axis
labelling should the user so desire. The existence or lack of any axis does not influence
the scaling mode which the user has requested.

The axes format options consist of allowing the user to specify either ‘PLAINAXES’,
“TICAXES’, or ‘GRIDAXES’. Under PLAINAXES, the specified axis (or axes) will appear
as a solid line. The TICAXES option will force the axes to be drawn as ticked lines, with
the tic intervals specified by the UPSET options:

CALL UPSET (‘TICX’,XINTERVAL)
CALL UPSET (‘TICY’,YINTERVAL)

XINTERVAL and YINTERVAL are single-valued REAL variables which specify the inter-
val (in current units) at which tic marks are to appear on the X and Y axes respectively.
Under the default values of zero X and Y tick intervals, UPLOT will choose suitable inter-
vals based upon the axes existence and data scaling options specified by the user. The
GRIDAXES option should be used whenever grid lines are desired for the axes which
have been defined. The grid spacing will be determined in the same manner as the tic
interval under TICAXES. Under POLAR coordinates, XINTERVAL defines the radial dis-
tance between concentric circles which comprise the grid lines for the R-axis; whereas,
YINTERVAL specifies the angular increment at which grid lines which be drawn for the
O-axis.

vii-3

The user may position his axes through the use of the following options: ‘EDGEAXES’,
‘ZEROAXES’, ‘XZEROYEDGE', ‘YEDGEXZEROQ/, ‘XEDGEYZEROQO', and '‘YZEROXEDGE'.
The EDGEAXES option indicates that the axis (or axes) is to be oriented near the edges
of the currently defined device area. When the EDGEAXIS option is used in conjunction
with XYAXES and OWNSCALE, UPLOT will generate X and Y axes which intersect at the
minimum values contained within the X and Y arrays. In addition, the axes will be posi-
tioned near the left and bottom edges of the device area. Should the minimum and max-
imum values of the X and Y arrays constitute an interval which contains zero, the
ZEROAXES option may be used to force the intersection of the axes through the given
zero point. Should ZEROAXES be specified, and zero is not contained within the defined
interval, EDGEAXES will be generated. XZEROYEDGE, YEDGEXZERO, XEDGEYZERO,
and YZEROXEDGE options are merely extensions of the EDGEAXES and ZEROAXES
options, and are subject to the constraints outlined above.

The user is provided with the ability to control the format under which the X and Y axes
are labeled through the use of the following options: ‘NOXLABEL’, ‘XNUMERICLABEL',
‘XALPHALABEL’, 'XBOTHLABELS’, ‘NOYLABEL’, ‘YNUMERICLABEL', 'YALPHALABEL’,
and ‘'YBOTHLABELS'. ‘NOXLABEL’ and ‘NOYLABEL’ should be used when the labeling
of the X and Y axes is to be supressed. The ‘XNUMERICLABEL’ and ‘YNUMERICLABEL'
options indicate that numeric labels are to be created along the X and Y axes at the tic
intervals specified by ‘TICX’ and ‘TICY’ respectively. The actual values for the numeric
labels will be based upon the axes scaling options previously discussed.
‘XALPHANUMERIC' and ‘YALPHANUMERIC’ allow the user to generate alphanumeric
labels {or titles) for each axis. The actual information to be displayed is defined through
a call to UPSET:

CALL UPSET (‘XLABEL’,XDATA)
CALL UPSET (‘YLABEL’,YDATA)

XDATA and YDATA are strings of up to 40 characters in length, with the standard string
termination character inserted at the end of the information. The XBOTHLABELS and
YBOTHLABELS options are used when numeric as well as alphabetic labels are desired.

The user is provided with the ability to control the format under which numeric labels will
be printed through the use of the ‘BESTFORMAT', 'IFORMAT’, and ‘GFORMAT’ options.
Under ‘IFORMAT’, 'EFORMAT’, all numeric labels will appear as integers, with truncation
occurring for any non-integral values. EFORMAT and GFORMAT will generate labels
which will be edited into either standard FORTRAN ‘E’ or ‘G’ formats respectively.

BESTFORMAT implies that the numeric labels are to be output under the format which is
most appropriate for the given label.

Time Series Axes
In addition, there is the axes routine, UTAXIS, that permits the user to select, scale and
label time series axes. For further information on this routine, see the subroutine

description section. It is specified:

CALL UTAXIS(BEGPER,PERIOD,YMIN,YMAX)

Curve Fitting Options

UPLOT provides an additional facility for those users desiring to fit linear, least-squares
polynominal, and spline curves to their data points. Interested users are directed to the
detailed descriptions of UPLOT, ULSTSQ, and ULINFT contained within GCS pro-
grammer’s reference manual.

vii-4

Extended High-Level Graphics

For data presentation formats extending beyond those available through UPLOT and
UPLOT1, a series of generalized histogram, barchart and piechart utility subroutines
have been incorporated into GCS. These subroutines are comprehensive enough to per-
mit their utilization as the core of a complete data analysis and display program; without
compromising the versatility to be incorporated into a graphics program within which
they play a relatively minor role.

Histogram generation facilities are provided through the use of subroutine UHISTO:
CALL UHISTO (DATA,XN,CELLS)

DATA is a REAL array containing the data values from which the histogram is to be con-
structed, XN is a single-valued REAL variable which is used to specify the number of ele-
ments in the DATA array; and CELLS is a single-valued REAL variable which designates
the number of cells (or bars) which are to appear on the histogram. The standard axes
existance, labeling and scaling options previously discussed for UPLOT also apply to
UHISTO, with the exception of the GRIDAXIS option for the X and Y axes, and ‘TICAXIS’
for the 'Y axis.

Subroutine UBAR may be invoked whenever the user desires to generate a barchart.
CALL UBAR (DATA,XN,LABELS,SLABEL)

DATA and XN are interpreted in the same manner as described above the UHISTO.

LABELS is a character array which is used to specify the label for each XN values stored

in DATA. SLABEL is a single-valued REAL variable which defines the length (in charac-

ters) of each element of the LABELS array. Should UBAR encounter the standard string

termination character (;) while processing any of the label items, no additional charac-

ters are obtained from the item and the string prior to the terminator is scaled to a string
of SLABEL characters in length.

Subroutine UCHART may be invoked whenever the user desires to gnerate a grouped
bar chart for multi-valued data.

CALL UCHART(ARRAY,GROUPS,BARS,LABELS,YMAXL)

Standard piechart generation facilities are available under GCS through subroutine
UPIE which may be called by the following sequence:

CALL UPIE (DATA,XN,LABELS,SLABEL)

DATA, XN LABELS and SLABEL are interpreted in the same manner as under UBAR.

vii-5

oloXoNoNoNoNoRoXoXe)

OO0

O000

OO0000

SAMPLE PROGRAM USED TO ILLUSTRATE APPLICATION OF SUBROUTINE
‘UPLOT1". EIGHT CURVES WILL BE PLOTTED IN POLAR COORDINATES,
USING THE SINGLE-CURVE POLAR PLOTTING ROUTINE. THE PURPOSE OF
THISEXAMPLE IS TO ILLUSTRATE THE USE OF THE HIGH-LEVEL
SUBROUTINE TO PLOT SINGLE CURVES WITHIN THE USER-DEFINED DEVICE
AREA. NO AXES OR AXES LABELING IS REQUESTED. THIS WAS WRITTEN
FOR A TEKTRONIX 4010/4013 TERMINAL.

INITIALIZE CONSTANTS AND ANGLES

DIMENSION R(361), THETA(361)
DATA PI,W,YO/3.1415925,0.0,4.71/
DO 11=1,361

THETA(1) =FLOAT(l) *P1/180.0

ENTER GCS, SET FOR POLAR, RADIAN MEASURE, NO AXES AND NO LABELS.

CALL USTART

CALL USET (‘POLAR))
CALL USET (‘RADIANS’)
CALL USET (‘NOAXES')
CALL USET (‘NOXLABEL')

INCREMENT LOCATION OF DEVICE PLOTTING AREA, AND PLOT THE.
FIGURES.

DO3I=1,2

XO0=-15

YO=YO-1.8

DO3J=14

W=W+0.5

XO=X0+1.8

CALL UDAREA (X0,(XO+1.5),YO,(YO+1.5))

CALL UOUTLN

DO 2K=1,361
R(K)=1.2-0-.7*(ABS(COS(W*THETA(K)))-ABS(SIN(W*THETA(K))))

PLOT 361 DATA POINTS SPECIFIED BY ‘R’ AND ‘THETA' USING THE
STANDARD LINE OPTION WITHIN THE DEVICE AREA WE HAVE DEFINED.
NOTE THAT NO AXES OR AXES LABELING WAS SPECIFIED.

CALL UPLOT1 (R, THETA,361.0)
CONTINUE

CALL UEND

STOP

END

EXAMPLE VII-1

vii-6

DIMENSION R(861), THETAC361)

DATA ;I H, YB/S 14160265,0.5,4.71/
1 - l

THETACI) = FLOATCI) n PI / 188.8

8

EEEEEE
%

Bkt Marna
§€§4°é

K = I. 3061
= | .2-0,70CABSCCOSCUNTHETACKD))—ABSCSINCHUNTHETACKD D))
LOT1 CR,THETA.SGI.Q)

:
g

3 CONTINUE

CALL UEND
sTOP

8

vii-7

COOOO0OO0O

OO0

OO0

OO0

OO0 0000

SAMPLE PROGRAM USED TO ILLUSTRATE APPLICATION OF SUBROUTINE
'UPLOT1". DATA VALUES CONTAINED IN ARRAYS 'E2' AND ‘DB’ ARE PLOTTED
IN A CARTESIAN COORDINATE SYSTEM. A GRIDDED AXES, AND
ALPHANUMERIC AXES LABELING ARE PROVIDED AS ADDITIONAL OPTIONS.
DEFAULT VALUE OF DEVICE AREA IS USED.

LOAD LABELS INTO ARRAYS, INITIALIZE ARRAYS.

DIMENSIONDB(61),E2(61), ARRAY(8)

CHARACTER XLABEL*40,YLABEL*40

DATA XLABEL/'STEADY-STATE EXCITATION VOLTAGE (VOLTS);'/
DATA YLABEL/'EXCITATION REFERENCED TO 1V (DB);'/

DO 11=1,61

DB(l) =FLOAT(I-1)

E2(1)=10.0**(DB(1)/20.0)

ENTER GCS

CALL USTART
CALL USTUD (ARRAY)

INDICATE THE DATA TO BE USED FOR AXES LABELING INFORMATION.

CALL UPSET ('XLABEL',XLABEL)
CALL UPSET ('"YLABEL',YLABEL)
CALL UPSET (TERMINATOR', ";)

INDICATE THAT GRIDDED AXES, TOGETHER WITH NUMERIC AND ALPHA
LABELS ARE DESIRED.

CALL USET ('GRIDAXES’)
CALL USET ('XBOTHLABEL)
CALL USET ('YBOTHLABEL')

CALL 'UPLOT1'TO PLOT A SINGLE CURVE OF 61 POINTS USING ‘E2' AND 'DB".
STANDARD LINE OPTION IS REQUESTED. .

CALL UPLOT1 (E2,0B,61.0)

USE CROSSHAIRS TO DEFINE LOWER BOUNDARY THEN UPPER BOUNDARY.
THEN CALL UWINDO AND PLOT JUST THAT PORTION.

CALL UGRIN (XL,YL,IC)

CALL UGRIN {XU,YU,IC)

CALL UWINDO (XL,XI,YL,YU)

CALL USET ('OWNSCALE’)

CALL UDAREA (ARRAY(5), ARRAY(6), ARRAY(7), ARRAY(8)
CALL UERASE

CALL UPLOT1 (E2,DB,61)

CALL UEND

STOP

END

EXAMPLE VII-2

vii-8

£O§ﬂ
\

H—-
g
\

z

04 vmOozmamm

VRO <-

o
&
\

ma
8 B 8 & &

-

-

on

[\~

& o0

o 209 429 600 800 1008
109 SO0 509 700 809

STEADY—STATE EXCITATION VOLTASE CVOLTS)

DIMENSION DB(61) E2¢(61)
XLABEL w48, Y

. YLABEL»40
DATA XLABFL/’STEADY-STATE EXCITATION VOLTAGE (VOLTS);’/
DATA YLABEL/’EXCITATION REFERENCED TO 1VCDB),;‘/

DBCID = FLOATCI~-1D
E2CID = 10.9wn(DBCI> / 28.98)
USTART

UPSET ¢’ TERMINATOR’, ‘5’
UPSET C’ ¢, XLABEL)D
UPSET C’/YLABEL’, YLABEL)D
USET (‘SRIDAXES’)D

USET C‘XBOTHLABEL‘)>
USET C’YBOTHLABEL’)
UPLOTI CE2,DB,61.8)
UEND

EEEFFRFEE

&

vii-9

(eXeoNoNoXoNoNoXe)

eXeNoNoXe OO0 000

(eXoXoXe!

SAMPLE PROGRAM USED TO ILLUSTRATE APPLICATION OF SUBROUTINE
‘UPLOT1'. DATA VALUES CONTAINED IN ARRAYS ‘E2' AND ‘DB’ ARE PLOTTED
IN A SEMI-LOGARITHMIC COORDINATE SYSTEM. A GRIDDED AXES, AND
ALPHANUMERIC AXES LABELING ARE PROVIDED AS ADDITIONAL OPTIONS.
DEFAULT VALUE OF DEVICE AREA IS USED.

INITIALIZE ARRAYS, LOAD LABELS INTO LABEL ARRAYS.

DIMENSION DB(61),E2(61)

CHARACTER XLABEL*40,YLABEL"40

DATA XLABEL/'STEADY-STATE EXCITATION VOLTAGE (VOLTS);/
DATA YLABEL/'EXCITATION REFERENCED TO 1V (DB):"/

DO 11=1,61

DB(I)=FLOAT(I-1)

E2(1)=10.0"*(DB(1)/20.0)

ENTER GCS
CALL USTART
INDICATE THE DATA TO BE USED FOR AXES LABELING INFORMATION.

CALL UPSET (‘TERMINATOR’, ;9
CALL UPSET (‘XLABEL‘XLABEL)
CALL UPSET (‘YLABEL',YLABEL)

INDICATE THAT GRIDDED AXES, TOGETHER WITH NUMBERIC AND ALPHA
LABELS ARE DESIRED. ALSO SPECIFY WHICH AXIS IS LINEAR, AND WHICH IS
LOGARITHMIC.

CALL USET (‘GRIDAXES’)
CALL USET (‘XBOTHLABEL’)
CALL USET ('YBOTHLABEL")
CALL USET (‘LOGXAXIS’)

CALL ‘UPLOT1' TO PLOT A SINGLE CURVE OF 61 POINTS USING ‘E2' AND ‘DB’.
STANDARD LINE OPTION IS REQUESTED.

CALL UPLOT1 (E2,DB,61.0)
CALL UEND

STOP
END

EXAMPLE VII-3

vii-10

> AHOXM

vROA<—

£ 8 &8 & 8 & 8
N
N

5
A

(o R | §mnzmxm'nmx ZOH

-

-

a
AN

®
N

7

(2}
b

o

W -ad 19! 192 193
STEADY-STATE EXCITATION VOLTASE (VOLTS)

DIMENSION DB(CB1), E2(81)

CTER XLABEL®40, YLABEL #48
DATA XLABEL/’STEADY-STATE EXCITATION VOLTAGE CVOLTS), ¢/
DATA }LABEL/’EXCITATION REFERENCED TO 1VCD8),’/
1 = |, 81
DBCI) = FLOATCI-1D
E2CI) = 18.29wnCDBCI) / 20.00

USTART

UPSET C’TERMINATOR’,‘;‘D

4, XLABEL)D

:

8

USET C’LINYAXIS‘D
UPLOT! CE2,DB,61.8)
UEND

E%EEEEEEEEEEE

vii-11

OO0 OO0O000

COO00O0 OO0

OO0 000

SAMPLE PROGRAM TO ILLUSTRATE APPLICATION OF GCS SUBROUTINE
'UHISTO".

ALLOCATE AN ARRAY TO STORE DATA VALUES, AND INITIALIZE A COUNTER.

DIMENSION DATA (1000)
DATA XN/1000./

BUILD DATA FROM SINE VALUES

DO21=1,1000
DATA() = SIN(FLOAT(I)/150)

ENTER GCS AND INDICATE THAT THE ENTIRE DEVICE AREA IS DESIRED.
CALL USTART

CALL UPSET (TERMINATOR',";")

CALL USET ('LARGE)

CALL USET ((PERCENTUNITS’)

CALL UDAREA (0.100.,0.,100.)

INDICATE THAT THE HISTOGRAM IS TO BE 'FULLSCALED’ AND THAT THE X
AXIS 1S TOHAVE ALPHABETIC AS WELL AS NUMERIC LABELS. ALSO SET
THE ALPHABETIC LABEL WHICH IS TO BE PRINTED ON THE X AXIS.

CALL USET ((FULLSCALE)

CALL USET ('XBOTHLABELS')

CALL USET (‘'XLABEL’,'DISTRIBUTION OF VALUES OF SINE:’)

PROCESS THE DATA ARRAY USING 20 CELLS.

CALL UHISTO (DATA,XN,20)

TERMINATION

CALL UEND

STOP
END

EXAMPLE VII-4

vii-12

1. To 1.1 ©

.9 TO 1. 136 J
.8 To .8 &7 J
.7 TO .8 4b 4J

.6 TO .7 40 #J

.5 T0 .6 386 4J

.4 TO .5 34 l

.3 TO .4 44 L

.2 To .3 47

.1 TO .2 45

8. To .% 45

-.1 TO 8. 36

-.2T0 -.1 30

-.37T0 -.2 31 AJ

-.4 TO -.3 32 441

-.5T0O -.4 34 L

-.6 TO -.6 36 17

~.7 TO -.6 38 L‘_

-.8 TO -.7 486 l

-.89 T0 -.8 &8 l

1) R L L] L] ¥ LJ L] v LJ L] kR 4

) 12 24 396 48 69 T2 84 96 108 120 192 144
DISTRIBUTION OF VALUES OF SINE

DIMENSION DATAC1888)
DATA XN/1088./
DO 21 =1, 10080
2 DATACT)Y = SINCFLOATCI)/168.)
USTART

USET C’LARSE’)D

UPSET C’/XLABEL‘, /DISTRIBUTION OF VALUES OF SINE; ‘D
UHISTO CDATA,XN,28.)

T
:

vii-13

OO0

OO0 0000

SAMPLE PROGRAM USED TO ILLUSTRATE APPLICATION OF GCS
SUBROUTINE ‘UBAR' TODISPLAY A BAR-CHART.

ALLOCATE ARRAYS TO STORE DATA VALUES AND LABELS FOR THE CHART.

DIMENSION DATA (7)

CHARACTER LABELS*12 (7)

DATA DATA,Y/4.30.,48.,10.2.2.4.100./

DATA LABELS/'‘ALGOL; ‘COBOL;’, ‘FORTRAN;' ‘GMAP;", "JOVIAL:",
‘SIMSCRIPT;", ‘'SNOBOL;"/

CALL USTART

CALL UPSET (‘TERMINATOR', *:)

CALL USET (‘XBOTHLABELS')

CALL UPSET (‘XLABEL', ‘TYPICAL LANGUAGE UTILIZATION AT USMA;)

CALL UBARTODISPLAY THE DATA VALUES CONTAINED WITHIN THE DATA
ARRAY, AND LABELS SPECIFIED BY THE LABELS ARRAY.

CALL UBAR (DATA FLOAT(NUMBER),LABELS,12)
WRAP-UP GRAPHICS ACTIVITY AND TERMINATE THIS FORTRAN PROGRAM.
CALL UEND

STOP
END

EXAMPLE VII-5

vii-14

=].m:uu.
18. | guad
48. | FORTRAN
32. | cosoL

4. :lALGOL
{ 1 1 1 | A | ¥ | |

B% 10X 20X SO% 40X BOX 68X 70X% 69X 90X 100k
TYPICAL LANSUASE UTILIZATION

PARAMETER NUMBER=7

DINENSION DATACNUMBER)D

CHARACTER LABELS®»]2CNUMBERD

DATA DATA/4.,30,.,48.,108.,2.,2. 4./

DATA LABELS/'ALBOL)‘,'COBOL)','FORTRAN)'.'BHAP}‘,'dOVIAL}',
+SIMSCRIPT; ¢, /SNOBOL; ‘/

CALL UPSET ¢‘TERMINATOR’, ;3D

CALL USET <‘XBOTHLABELS’)

CALL UPSET C‘/XLABEL’, ‘TYPICAL LANGUASE UTILIZATION; ‘0
g:tt ggﬁg CDATA. FLOATCNUMBERD ,LABELS, 12.0

vii-15

COO0O00O0O0

OO0

00000 0000

OO0

SAMPLE PROGRAM USED TO ILLUSTRATE APPLICATION OF GCS
SUBROUTINE ‘UPIE’. IN ADDITION TO USING UPIE TO DISPLAY A PIE-CHART,
SOME ADDITIONAL GRAPHIC OUFPUT IS PERFORMED THROUGH USE OF
UPRNT1.

ALLOCATE ARRAYS TO STORE DATA VALUES AND LABELS FOR THE CHART.

DIMENSION DATA (7)

CHARACTER LABELS*12(7)

DATA DATA,Y/4.30.48.10.2.,2.4.,100./

DATA LABELS/'ALGOL;’ ‘COBOL!", ‘FORTRAN;' ‘GMAP;', 'JOVIAL;",
‘SIMSCRIPT;", ‘'SNOBOL;'/

ENTER GCS, INDICATE THAT AN ALPHABETIC LABEL IS DESIRED FOR THE X
AXIS, AND SPECIFY THE LABEL WHICH IS TO BE PRINTED.

CALL USTART

CALL UPSET (‘TERMINATOR', ;")

CALL USET (‘XALPHABETIC')

CALL UPSET (‘XLABEL’, ‘TYPICAL LANGUAGE UTILIZATION AT USMA;"

CALL UPIE TODISPLAY THE DATA VALUES CONTAINED WITHIN THE DATA
ARRAY, AND LABELS SPECIFIED BY THE LABELS ARRAY.

CALL UPIE (DATA,FLOAT(NUMBER),LABELS,1 2)

SET ADDRESSING MODE TO ‘DEVICE'/'PERCENTUNITS’. SET DEVICE AREA
WHICH UTILIZES THE ENTIRE DISPLAY SURFACE, AND OUTPUT VALUES IN
LABEL AND DATA ARRAYS, ADJACENT TO THE PIE-CHART WHICH HAS JUST
BEEN GENERATED.

CALL USET (‘DEVICE)

CALL USET (‘PERCENTUNITS’)
CALL UDAREA (0.,100.,0.,100.)
DO 1 1=1,NUMBER
Y=Y-(100./FLOAT(NUMBER+ 1)
CALL UMOVE (0.Y)

CALL UPRNT1 (LABELS(I),' TEXT)
CALL UPRNT1 (‘—;", ‘TEXT)

CALL UPRNT1 (DATA(I), INTEGER’)
CALL UPRNT1 (“%;'‘TEXT)
CONTINUE

WRAP-UP GRAPHICS ACTIVITY AND TERMINATE THIS FORTRAN PROGRAM.

CALL UEND
STOP
END

EXAMPLE VII-6

vii-16

ALGOL - 4X

CoBOL. — 38X

FORTRAN — 48X

EMAP ~ 10X

vJOVIAL = 2"

SIMSCRIPT - 2%

SNOBOL — 4%

DO 1

DATA,Y/4.,88.,48.,18.,2.,.2._4.,1080./

LABELS/*ALBOL; ¢, “COBOL; ‘., FORTRAN; /., “8MAP; 7, “JOVIAL;“,
/SIMSCRIPT;’, SNOBOL; ‘/

USTART

UPSEY C‘TERMINATOR’, ‘372

USET <’/XALPHABETIC’)

UPSET </XLABEL‘, ‘TYPICAL LANGUASE UTILIZATION;’D
UPIE CDATA, FLOATCNUMBERD LABELS, 12.)

USET (’DEVICE’D

USET C‘PERCENTUNITS?)D

UDAREA ¢0.,100..8.,1088.D

Ie=1,

NUMBER
Y = Y ~- €180, / FLOATCNUMBER+12)

CALL
CALL
CALL

UPRNT! €/ = 37 ‘TEXT’D
UPRNT1 CDATACI), /INTESER’D
UPRNT] C“X%37, ‘TEXT’D

vii-17

CHAPTER VIIl
COORDINATE SYSTEMS AND TRANSFORMATIONS

An Overview of GCS Coordinate Systems

The GCS coordinate system options have been designed to provide adequate flexibility
for the user in order to enable him to work in whatever type of coordinate system environ-
ment is most natural and convenient for him to use at a particular point in his program.
There are several areas in which basic options exist; however, it is imperative that the
user fully understand the basic coordinate system under GCS before attempting to alter
any of the default options.

The GCS default coordinate system which is defined at the start of a GCS program (via a
CALL USTART) is a simple, pre-defined Cartesian (rectangular) X-Y coordinate system.
No special options such as semi-logarithmic or log-log plotting are in effect. Axes are
not rotated with respect to the screen or plotbed and no special scaling options are in
force. Distances are measured from the origin, not incrementally from the last point plot-
ted. As described in Chapter Ill, any drawing done in this coordinate system may be
viewed through an adjustable size window which can automatically clip off irrelevant or
distracting parts of the picture.

A GCS programmer may specify that he wishes to use one of three coordinate systems
when working in two dimensions:

Cartesian (rectangular)
Log-log or semi-logarithmic rectangular
Polar coordinates.

Points or lines to be plotted may be identified either by absolute coordinate position or
relative to the last plotted point (incremental). The scale at which plotting is to occur
may be user-specified in virtual space which can be projected onto the plotting device at
any desired scale or it may be directly controlled in terms of dimensions of the plotting
device. These dimensions may be specified in inches, centimeters, font-units
(alphanumeric character heights and widths) percent-units, or raster units.

In addition to the basic or SYSTEM axis, the user may define any number of secondary
USER axis systems which may be rotated, translated, and scaled ditferently from the
SYSTEM axis. Such secondary USER axes may be defined relative to the basic SYSTEM
axis or relative to a previously defined USER axis. This feature facilitates the definition
of complex coordinate systems where, for example, one moves freely from coordinates
based upon a location on a satellite circling the earth. Similarly, the use of
simultaneously maintaining a secondary axis whose origin is a point on the curve,
oriented controlled independently of one another and defined either with respect to the
SYSTEM axis or cumulatively based on successive transformations on a series of
different USER axes. Since the rotations and scaling in GCS are accomplished by stan-
dard matrix operations one can obtain mathematically accurate visual representations of
highly abstract vector spaces such as those common to many linear programming
applications.

Coordinate System Definition

In order to provide the capabilities discussed above, GCS has incorporated a very
powerful secondary axis system which allows the user to define a new axis origin. The
new origin can be displaced from the current origin, oriented about the new center point,
and/or have a different unit length for the X and for the Y axis. The new axis is defined
through subroutine UCOSYS which is called by the following sequence:

viii-1

CALL UCOSYS (DX,DY,SCLX,SCLY,ANGLE)

DX and DY are used to specify (in current units of the current coordinate system) the
position of the origin for the new axis. SCLX and SCLY define the scale of the new axis
unit lengths with respect to their sizes in the current axis system. ANGLE is used to
specify the rotation (in current angular units) of the new axis about its origin,

The key rule to be remembered is that every axis system has an origin which is coordi-
nate location (0.,0.); all rotation occurs about this center point. The SYSTEM origin is the
primary origin for the default axis system. In virtual space, the SYSTEM origin is at vir-
tual location (0.,0.); this location may or may not be within the window defined by the
user. In device space, it is a point on the display surface (usually at the lower left corner)
which is at raster position (0.,0.). At any time, the user can insure that his coordinate
addressing is interpreted with respect to the primary origin by making the following call
to USET prior to addressing:

CALL USET ('SYSTEMAXIS')

To request that coordinate specifications be interpreted with respect to the user's cur-
rent axis system, the following option is used:

CALL USET (‘USERAXIS")

The default user axis coincides with the system axis. When a new user axis is created by
subroutine UCOSYS, the GCS status is automatically switched to ‘USERAXIS'. When
UCOSYS is invoked, there are actually two USER axes created. They are either identical
to each other, or one ‘lags' (in a mathematical sense) behind the other by one USER axis
definition. One of these USER axes is called the WORKING axis and the other is called
the REFERENCE axis. The REFERENCE axis is identical to, or ‘behind’ the WORKING
axis. Under default conditions, the REFERENCE and WORKING axes are identical to
each other; furthermore, these axes initially coincide with the SYSTEM axis. When a
new USER axis is defined, it is created from the REFERENCE axis and entered as the
WORKING axis transform. If UCOSYS is in the cumulative mode, then the new WORK-
ING axis definition is placed back into the REFERENCE axis transform. Thus, the
REFERENCE axis may be viewed as a permanent axis, while the WORKING axis may be
considered as only temporary in nature.

When multiple coordinate systems are specified by the user, the new axis is computed
independently of the previous USER axis. This is the new axis which is computed from
the last permanent axis (usually the SYSTEM axis) and replaces any previously defined
USER axis. This feature, which is the default condition under GCS, is selected by the
following call:

CALL USET (‘WORKINGAXIS')

For advanced problems, the user may wish to define multiple coordinate systems that
are computed on a cumulative basis. That is, the new axis is computed from the last per-
manent axis, and becomes the new permanent axis. This option may be specified
through the following call:

CALL USET (‘REFERENCEAXIS')

There exist several useful subroutines within GCS which are subsets of subroutine
UCOSYS, and facilitate the definition of a secondary axis at the current beam position.
Subroutine UROTAT creates a new axis rotated about an origin defined by the current
beam position. Subroutine USCALE defines an axis at the current beam position having
a specified X axis and Y axis scaling. Subroutine UORIGN defines a new axis at the cur-
rent beam position with no change of scale or orientation. These subroutines may be
invoked by the calling sequences:

viii-2

CALL UROTAT (ANGLE)
CALL USCALE (SCLX,SCLY)
CALL UORIGN

ANGLE, SCLX, and SCLY are interpreted in the same manner described for subroutine
UCOSYS. After the subroutines are invoked, the current beam position is associated
with coordinate location (0.,0.).

In certain situations, such as the display of unrelated objects, multiple independent sec-
ondary axis transformations must be created simultaneously. In order to operate upon
and modify one system, it is necessary to save the previous system and later restore it as

needed. This facility is available under GCS through the use of the following
subroutines:

CALL USVTR (ARRAY)

which is used to save the current transform, and
CALL UNSVTR (ARRAY)

which is called in order to restore a transformation from the array ARRAY, where ARRAY
is a 21 word dimensioned variable. Note that a call to USVTR does not affect the status
of the Graphics Compatibility System, but that a call to UNSVTR causes the restoration
of all variables and switches to the values that they held when the companion USVTR
was invoked. The user should not attempt to invoke UNSVTR for an array without pre-
viously saving a transform into that array by use of USVTR.

The secondary axis transformation feature of GCS is a very powerful mathematical
system which is quite useful to the beginning as well as advanced graphics programmer.
However, certain combinations of axis composition and specification will produce
results which are mathematically correct but not easily understood. For example, the
composition of a cumulative axis from an axis with non-uniform X and Y scaling will
introduce a skew factor. For additional information on the secondary axis implementa-
tion under GCS, interested users are directed to the subroutine description section.

viii-3

QOO0 00000 OO0 olooNoNeNoNe)

ONoNe

SAMPLE PROGRAM USED TO ILLUSTRATE THE USE OF GCS SUBROUTINE
'UCOSYS'. TWO DISPLAYS WILL BE DEFINED: A TRIANGLE WILL BE PLOTTED
INTHE DEFAULT COORDINATE SYSTEM; AND A SQUARE WILL BE DRAWN IN
A USER-DEFINED SECONDARY AXIS SYSTEM.

ENTER GCS, DEFINE A NEW VIRTUAL WINDOW, AND QUTLINE WINDOW.

CALLUSTART
CALL USET ('WORKINGAXIS')
CALL UWINDO (-10,10.-10.,0)
CALL UOUTLN

PROVIDE PEN COMMANDS TO DRAW A TRIANGLE IN THE DEFAULT GCS
COORDINATE SYSTEM.

CALL UMOVE (0.,0.)

CALL UPEN (2.,0)

CALL UPEN (0.2)

CALL UPEN (0.,0)

DEFINE A SECONDARY AXIS WITH AN ORIGIN AT (5.,4.), HAVING THE SAME X
AND Y SCALE FACTORS AS THE DEFAULT SYSTEM, AND ROTATED BY 45
DEGREES.

CALLUCOSYS (5.,4.,1.,1.,45)

PROVIDE PEN COMMANDS TO DRAW A SQUARE WITHIN THE SECONDARY
AXIS THAT WE HAVE JUST DEFINED.

CALL UMOVE (0.,0)
CALL URECT (3.3)

WRAP-UP GRAPHICS ACTIVITY AND TERMINATE THE FORTRAN PROGRAM.
CALL UEND

STOP
END

EXAMPLE VIII-1

viii-4

CALL USTART
CALL UGETC‘HORKINGAXIG
Cc:& UWINDO ¢~-13..18..~18.,18.0

UOUTLN
CALL UMOVE ¢8.,8.2
CALL UPEN ¢2.,8.0
CALL UPEN ¢8.,2.0
CALL UPEN ¢8.,8.0
CALL UCOSYS CB..4..I..I..4G)
CALL UMOVE CO..O.)
CALL URECT ¢3.,3.0
CALL UEND
8TOP
END

viii-5

COO000

O0000 OO0 OO0 oXoXoXe OO0 00000

QGOOO

o000

SAMPLE PROGRAM USED TO ILLUSTRATE COMPOSITION OF MULTIPLE
USER AXES. THE AXIS DEFINITION WILL BE PERFORMED IN THE ‘NON-
CUMULATIVE’ OR'WORKING AXIS' MODE. ENTER GCS, DEFINE A NEW
VIRTUAL WINDOW, AND OUTLINE DEFAULT DEVICE PLOTTING AREA.

CALL USTART

CALL USET ('WORKING AXIS')
CALL UWINDO (-2.8.-2.8))
CALL UOUTLN

DRAW AN AXIS AT THE CURRENT AXIS ORIGIN, THIS AXIS DISPLAY
SUBROUTINE WILL BE INVOKED DURING LATER PORTIONS OF THIS
PROGRAMMING EXAMPLE.

CALL AXIS

MOVE BEAM/PEN TO THE ORIGIN OF THE CURRENT (SYSTEM) AXIS, THEN
DEFINE A SECONDARY AXIS WITH AN ORIGIN AT (2.,5) AND ROTATED BY
TWENTY DEGREES.

CALL UMOVE (0.,0.)
CALLUCOSYS (2.5,1.,1.,20)

DRAW A DASHED LINE FROM THE CURRENT BEAM/PEN POSITION TO THE
NEW SECONDARY AXIS ORIGIN, THEN OUTLINE THE NEW AXIS.

CALL UPENT1 (0.,,0.,/DARROW’)
CALL AXIS

DEFINE ANOTHER AXIS WITH AN ORIGIN AT (5.,1.) AND ROTATED BY FORTY-
FIVE DEGREES.

CALLUCOSYS (5.,1.,1,1.,45)

REVERT TO '‘SYSTEMAXIS' MODE, AND MOVE TO THE ORIGIN OF THE
SYSTEM AXIS.

CALL USET (‘'SYSTEMAXIS')
CALL UMOVE (0.0)

RETURN TO ‘USERAXIS’ MODE, AND DRAW A DASHED LINE FROM THE ORIGIN
OF THE SYSTEM AXIS TO THE ORIGIN OF THE USER AXIS. AFTERTHIS IS
DONE, OUTLINE THE CURRENT USER AXIS.

CALL USET ('SYSTEMAXIS')
CALL UMOVE (2.,0)

RETURN TO 'USERAXIS' MODE, AND DRAW A DASHED LINE FROM THE ORIGIN
OF THE SYSTEM AX!S TO THE ORIGIN OF THE USER AXIS. AFTER THIS IS
DONE, OUTLINE THE CURRENT USER AXIS.

CALL USET ((USERAXIS’)

CALL UPEN1 (0.,0.,DARROW)
CALL AXIS

WRAP-UP GRAPHICS ACTIVITY AND TERMINATE A FORTRAN PROGRAM.
CALL UEND

STOP
END

viii-6

OO0

SUBROUTINE TO DRAW A COORDINATE AXIS DIAGRAM AT THE CURRENT
ORIGIN.

SUBROUTINE AXIS

CALL UMOVE (-1.,0)

CALL UPENT1 (1.0.'LARROW’)
CALL UMOVE (0.-1)

CALL UPEN (0.,1)

RETURN

END

EXAMPLE VIII-2

viii-7

SSEEFFFFERRPEEEEF

M‘Hmm‘)
UWINDG ¢-2.,8.,-2.,8.)

AXIS
Wmvescgé,aé> 1..1.,28.)
UPEN1 ¢B.,D., DAiRROG7>"
AXIS

ums Cs..l..l..‘..“.)
USET C/SYSTEMAXIS’)
UPEN! (€B.,@., ‘DARROW’)
AXIS

UEND

viii-8

0000000

00000 0000 000

O0000 O0000 O0O00

OO0

EXAMPLE PROGRAM USED TO ILLUSTRATE COMPOSITION OF MULTIPLE
USER AXES. THE AXIS DEFINITION WILL BE PERFORMED IN THE
‘CUMULATIVE' OR 'REFERENCE AXIS' MODE.

ENTER GCS, DEFINE A NEW VIRTUAL WINDOW, AND OUTLINE DEFAULT
DEVICE PLOTTING AREA.

CALL USTART
CALL UWINDO (-1.9.,-1.9))
CALL UOUTLN

INDICATE THAT SECONDARY AXES ARE TO BE BUILT CUMULATIVELY.
CALL USET (‘REFERENCEAXIS’)

DRAW AN AXIS AT THE CURRENT AXIS ORIGIN. THIS AXIS DISPLAY ROUTINE
IS IDENTICAL TO THAT USED BY THE PREVIOUS EXAMPLE.

CALL AXIS

MOVE BEAM/PEN TO THE ORIGIN OF THE CURRENT (SYSTEM) AXIS, THEN
DEFINE A SECONDARY AXIS WITH AN ORIGIN AT (2,5.) AND ROTATED BY
TWENTY DEGREES.

CALL UMOVE (0.0.)
CALL UCOSYS (2.5,1.1.,20)

DRAW A DASHED LINE FROM THE CURRENT BEAM/PEN POSITION TO THE
NEW SECONDARY AXIS ORIGIN, THEN OUTLINE THE NEW AXIS.

CALL UPEN1 (0.0.'DARROW’)
CALL AXIS

NOW MOVE TO THE ORIGIN OF THE CURRENT SECONDARY COORDINATE
SYSTEM, THEN DEFINE ANOTHER SECONDARY AXIS WITH AN ORIGIN AT
(5..1.) AND ROTATED BY FORTY-FIVE DEGREES.

CALL UMOVE (0.0)
CALLUCOSYS (5.1.,1.,1,45)

DRAW A DASHED LINE FROM THE CURRENT BEAM/PEN POSITION (THE
ORIGIN OF THE PREVIOUS SECONDARY AXIS) TO THE ORIGIN OF ACURRENT
SECONDARY AXIS, THEN OUTLINE THE CURRENT AXIS.

CALL UPEN1 (0.0./'DARROW’)
CALL AXIS

WRAP-UP GRAPHICS ACTIVITY AND TERMINATE A FORTRAN PROGRAM.

CALL UEND
STOP
END

SUBROUTINE AXIS

CALL UMOVE (-1.,0)

CALL UPEN1 (1.,0.'LARROW’)
CALL UMOVE (0.,-1.)

CALL UPEN (0.,1)

RETURN

BN EXAMPLE VIII-3

viii-9

(o) [a)
L] L]
N N ~n ~n la)
s » ”l Gl ~
a
kS . .
L] L -
oup
[. .
[S -y Lod»Y
o *. " a2 oY
[«] N ° s N o, o o o
S off) o con o R ey
7 Q@ a8 .8 81 -
amo 09m - owo > m =S e
. . . - o LY
v Aave .
g 853 84
@\ (U

mwmmm@mﬁm m_._
EEETREEIEERE N Ry

2

viii-10

0000 0000000000

OO0 00000 OO0 0000

0000

SAMPLE PROGRAM USED TO ILLUSTRATE APPLICATION OF GCS
SUBROUTINE ‘UCOSYS’ TO DEFINE A DYNAMIC SECONDARY AXIS SYSTEM.
THE EXAMPLE CALCULATES THE HORIZONTAL AND VERTICAL
COMPONENTS OF VELOCITY AND DISPLACEMENT FOR A PROJECTILE
WHICH TUMBLES DURING FLIGHT. THIS EXAMPLE IS IDENTICAL TOTHE
PREVIOUS PROGRAM WITH THE EXCEPTION OF THE ADDED ROTATIONAL
COMPONENT.

INITIALIZE TIME, ROTATIONAL ANGLE, VELOCITY, AND DISPLACEMENTS
DATA T,THETA,VO,X0,Y0/0.75.107.,-180.0./

ENTER GCS, DEFINE DISPLACEMENT WINDOW, AND OUTLINE DEFAULT
DEVICE PLOTTING AREA.

CALL USTART

CALL USET (‘WORKINGAXIS')
CALL UWINDO (-225.225,-15.95.)
CALLUOUTLN

MOVE INITIAL DISPLACEMENT COORDINATES, SPECIFY THAT SOFTWARE
CHARACTERS ARE DESIRED, LINE CHARACTER SIZE, AND SET DASH SPEC.

CALL UMOVE (XO,YO)

CALL USET (‘SOFTWARE')
CALL UPSET ('HORIZONTAL', 6.)
CALL UPSET (‘VERTICAL',3)
CALL UPSET ('SETDASH’,92)

DEFINE LOOP TO CALCULATE HORIZONTAL AND VERTICAL
DISPLACEMENTS.

B T=41
X=(707*VO*T)+XO
Y=T*(707*VO-(16.T)+YO

SPECIFY THE SECONDARY AXIS AT COMPUTED DISPLACEMENT
COORDINATES THEN DRAW THE FLIGHT PATH OF THE PROJECTILE TO THIS
ORIGIN.

CALL UCOSYS (X,Y,1.,1. THETA)
CALL UPENT1 (0.,0./DASH’)

SETUP A NEW WINDOW FOR DRAWING THE PROJECTILE ITSELF WITHIN THE
ROTATED COORDINATE SYSTEM WE HAVE JUST DEFINED. ADISTORTED ‘D’
REPRESENTS THE PROJECTILE.

CALL UWINDO (0.100.,0.,100.)
CALL UWHERE (X,Y)
CALL UPEN1 (X,Y,'DD")

REDEFINE DISPLACEMENT WINDOW, UPDATE TIME AND ROTATIONAL
ANGLE.

CALL UWINDO (-225.,225.-15.95))
T=T+0.4758
THETA=THETA+57.

CONTINUE

viii-11

000

WRAP-UP GRAPHICS ACTIVITY AND TERMINATE THIS FORTRAN PROGRAM.

CALL UEND
STOP
END

EXAMPLE Viil-4

viii-12

DATA T.THETA,V3.X2,Y2/8.,76.,197.,-168.,0./

CALL USTART

CALL USET C’/WORKINGAXIS’D

GALL UWINDO ¢~228B.,226.,-15.,88.)

CALL UCUTLN

CALL UMOVE ¢X3,Y8)

CALL USET C/S8OFTWARE’D

CALL UPSET <‘HORTZONTAL’,8.)

CALL UPSET ¢‘VERTICAL’,3.)

CALL UPSET C/SETDASH’,82.)

DO I I = 1, 4

X m C,7076UBNTY + X8

Y T C,.787 # V@ ~ C16.#0TD) «+ Yo

CALL UCOSYS ¢X,Y,1.,1.,THETAD

GALL UPENI ¢3..8.,/DA8H’)
i123..2.,123.)

p]
CALL UWINDO ¢~2265.,226.,~15.,86.2
THETA = THETA <« b7.
CONTINUE

CALL UEND
8TOP
END

viii-13

O00 0000000

OO0 OO0 OO000O0

OO0O0

[oXeX®)

[oXoX @]

SAMPLE PROGRAM USED TO ILLUSTRATE APPLICATION OF GCS
SUBROUTINE ‘UCOSYS' TO DEFINE A DYNAMIC SECONDARY AXIS SYSTEM.
THE EXAMPLE CALCULATES THE HORIZONTAL AND VERTICAL
COMPONENTS OF VELOCITY & DISPLACEMENT FOR A PROJECTILE.

DEFINE TIME, INITIAL VELOCITY, & INITIAL DISPLACEMENT LOCATION.
DATA TVO,X0,YO/0,107.-190.0./
ENTER GCS, DEFINE DISPLACEMENT WINDOW, AND OUTLINE THIS WINDOW.

CALL USTART

CALL USET (‘WORKINGAXIS)
CALL UWINDO (-225,225.-15,95))
CALL UOUTLN

CALCULATE HORIZONTAL VELOCITY COMPONENT, VELOCITY SCALE
FACTOR,MCVE TOINITIAL DISPLACEMENT COORDINATES, AND SET DASH
SPECS.

VX=.707"VO

ZETA=11"VX

CALL UMOVE (X0,YO)

CALL UPSET (‘SETDASH' 92)

DEFINE LOOP TO CALCULATE DISPLACEMENTS, AND VERTICAL VELOCITY
COMPONENT.

DO11=1,11
X=(VX'T)+ X0
VY=21(VX-32*T)
Y=T*(VX-(16.T)) + YO

SPECIFY THE SECONDARY AXIS AT COMPUTED DISPLACEMENT
COORDINATES THEN DRAW THE FLIGHT PATH OF THE PROJECTILE TO THIS
ORIGIN

CALL UCOSYS (X,Y,1.1.0)
CALL UPEN1 (0.0.'DASH))

DEFINE A NEW WINDOW FOR THE VELOCITY AND PLOT THE HORIZONTAL &
VERTICAL COMPONENTS OF THE PROJECTILE'S VELOCITY.

CALL UWINDO (0. ZETA,-ZETA,ZETA)
CALL USET (‘RELATIVE")

CALL UPEN1 (VX,0.'LARROW)
CALL UMOVE (-vX,0)

CALL UPEN1 (0.,VY,'LARROW")
CALL UMOVE (0.,-VY)

REDEFINE DISPLACEMENT WINDOW, UPDATE TIME, AND CONTINUE A LOOP.
CALL USET (‘ABSOLUTE))

CALL UWINDO (-225.225.-15.95)

T=T+.4758

CONTINUE

WRAP-UP GRAPHICS ACTIVITY AND TERMINATE THIS FORTRAN PROGRAM.
CALL UEND

STOP
END

EXAMPLE VIII-5

viii-14

DATA T,VB,X2,Y2/®.,1087.,-188.,8./
CALL USTART
CALL USET ¢’ “
CALL UWINDG (-225.,225.,-15.,96.)
CALL UOUTLN
VXK = 707 » V8
ZETA = 1. ® VX
CALL X8, Y8
CALL UPSET C‘SETDASH/,92.)
DOt I = i, 11
X = CVXuT) « X8
VY = 2. » VX - ¢S32,8Td)
Y =T # CVX - C18,0TD) + Y8
UCOSYS CX,Y,1.,1.,8.
UPEN! ¢@..9., ‘DASH’
UWINDC €2, ,ZETA,—ZETA, ZETAD
USET ¢’/RELATIVE?)
UPENI ¢VX, 8., LARROW’)
¢-vk,8.)

FREREEREEE
i

-4
|

-4
4

5
[-4]
]

85F

viii-15

OO0 0000000

OO0 O000 OO0 OO0 (oo XoXe

OO0

SAMPLE PROGRAM USED TO ILLUSTRATE APPLICATION OF GCS
SUBROUTINE UCOSYS TO DEFINE A DYNAMIC SECONDARY AXIS SYSTEM.
THE EXAMPLE DISPLAYS THE TANGENT AND NORMAL COMPONENTS OF
TRAJECTORY AND DISPLACEMENT FOR A PROJECTILE.

DEFINE TIME INITIAL VELOCITY AND INITIAL DISPLACEMENT LOCATION.
DATAT\VO,X0O,Y0/0.,107.-190.,0./
ENTER GCS DEFINE DISPLACEMENT WINDOW, AND OUTLINE THIS WINDOW.

CALL USTART

CALL USET (‘WORKINGAXIS')

CALL UWINDO (-225.225.-225.,225)
CALL UOUTLN

CALCULATE TANGENT VELOCITY COMPONENT MOVE TO INITIAL
DISPLACEMENT COORDINATES, AND SET DASH SPECS.

VX=.707*VO

CALL UMOVE (X0,Y0)

CALL UPSET (‘SETDASH',92)
CALL USET (‘RADIANS’)

DEFINE LOOP TO CALCULATE DISPLACEMENTS

DO11=1,11
X=(VX*T)+XO
Y=T*(VX-16."T)) + YO
DYDX=1-(32*(X-X0)/VX**2)

SPECIFY THE SECONDARY AXIS AT COMPUTED DISPLACEMENT
COORDINATES AND ROTATED TO THE SLOPE OF THE TANGENT. THEN DRAW
THE FLIGHT PATH OF THE PROJECTILE TO THIS ORIGIN.

CALLUCOSYS (X,Y,1,1,ATAN(DYDX))
CALL UPEN1 (0.,0.'DASH")

DEFINE A NEW WINDOW AND PLOT THE TANGENT & NORMAL COMPONENTS
OF THE PROJECTILE’'S TRAJECTORY.

CALL UWINDO (0.,1.,-1.,0)
CALL USET (‘RELATIVE’)

CALL UPEN1 (.05,0.’LARROW’)
CALL UMOVE (-.05,0)

CALL UPEN1 (0,-.05,'LARROW)
CALL UMOVE (0.,.05)

REDEFINE DISPLACEMENT WINDOW, UPDATE TIME, AND CONTINUE A LOOP.
CALL USET ((ABSOLUTE)
CALL UWINDO (-225.225.-225.225)

T=T+.4758
CONTINUE

WRAP-UP GRAPHICS ACTIVITY AND TERMINATE THIS FORTRAN PROGRAM.

CALL UEND

SLSP EXAMPLE VII-6

viii-16

. e225.)

D / VXwn2)
1., ATANCDYDXD)
)
-225.,225

N
Q
3 . 85z . 3%
4 L oand g
m M lona .M- amum._alsaoo nf
: 3 .u.“..rh um.w.wmu
; Wm S il
A ORI
TR
,
s34 3

CALL USTART
CALL USET ¢’
CALLUSET
CALL UEND

i m

lWTINUE

viii-17

CHAPTER IX
THREE DIMENSIONAL GRAPHICS

The three dimensional version of GCS gives to the user the ability to describing his
environment in three dimensions. Each of the primary two dimensional GCS routines
have a three dimensional counterpart: U3PEN, USMOVE, U3DRAW, U3PRNT, USWRIT,
U3CSYS, and UBWHER. The coordinates used by each of these routines may be
specified as (X,Y,2) rectangular coordinates, (R,0,2). cylindrical coordinates, or (R,O.)
spherical coordinates. Use of the 3-D routines does not preclude use of the 2-D
routines; the 2-D routines are defined so as to draw parallel to the current X-Y plane on a
plane specified by a default Z coordinate, contained in the Graphics Status Area (GSA).
This Z value may be set by the user with an UPSET (‘ZVALUE’, value) call. The default
ZVALUE is zero. By using both 2-D and 3-D routines an image may be described in 3-
space.

In order to specify the appearance of the object being drawn, the location of the viewer
and the direction in which he is looking must be specified. By calling UVIEW
(XVIEW,YVIEW,ZVIEW,XSITE,YSITE,ZSITE), the user can specify where the view point is
located and at what point in the evironment he is looking (view site). The environment
will then be displayed from this viewpoint with the view site located on a line which
passes through the center of the viewport. The viewport indicates the boundaries of the
user’s field of view and also how far the viewport is from the view point or the viewsite.
The X-coordinates of the viewport will range in the interval (-A/2,A/2) and the Y-coordi-
nates in the interval (-B/2,8/2). Default values for UVIEW are (0.,0,,150.0.,0.,0.) and for
UVWPRT are (200.,200.0). GCS will also automatically clip points outside of the view-
ing pyramid (behind the view point or outside the viewport). The user can select whether
the resulting image will be mapped to the screen with a PERSPECTIVE (default) or
ORTHOGONAL projection.

The user may specify which portion of this viewport will be displayed on the screen by
setting his UWINDO. The UWINDO boundaries may or may not overlap the viewport. If no
portion of the UWINDO corresponds to the viewport, the viewport will be expanded to
encompass the UWINDO if the UWINDO changes. If the viewport is specified smaller
than the UWINDO, the UWINDO will contract to encompass the viewport.

As in 2-D GCS, the user may construct arbitrary user coordinate systems using the calls
U3CSYS, U3SCAL, and UBROTA. These work similar to the 2-D case with one exception.
Since 3-D rotations are not commutative, the order of rotation must be specified with a
suitable USET call: ‘XYZ', ‘XZY’, 'YXZ’, ‘ZXY, or ‘ZYX'. The default sequence is ‘ZYX’.

A call to the 2-D routine UCOSYS will cause a rotation about the Z axis. Any rotation
around other than the system Z axis will cause the XY plane to cease being parallel to
the screen and will effect the output of symbols and curves (see below).

Curve generation using the UARC, UCRCLE, UCONIC, UPLYGN, and URECT routines
function as they did before. However, since they are 2-D routines, their output will be
created in the XY plane specified by the current ZVALUE parameter as indicated above.
In addition, software characters generated by USPRNT, UBWRIT, and UAOUT will also
appear in the XY plane. Hardware characters still appear on the plane of the display sur-
face. Line terminators (arrowheads and software characters) and tic marks appear on a
plane specified by the two end points of the line and a third point which the user can
specify via the UPOINT(X,Y,Z) subroutine. The default UPOINT is a point on the default
XY-plane outside the default UWINDO boundaries. This point is (-6931471806, -
1.096122887, 0.).

Textual output for three dimensions has been expanded slightly to allow another text
output mode. This mode is ‘XYZCOORDINATES’ which will print the three components

ix-1

of a set of 3-D coordinates. ‘XYCOORDINATES' are still available for 2-D coordinates.
All other text functions of 2-D GCS are processed as before. Since the text created by
UBPRNT and USWRIT is displayed in the current user X-Y plane, specified by the Z-
coordinate of the specified location, suitable choices of UVIEW will result in text which
when displayed will be backwards. This is a result of viewing the text from behind it.

Drawing 3-D images is primarily intended for use in VIRTUAL space. However, a user
who wishes to do so can directly address the face of the display surface in DEVICE
space. If this is done, no clipping against viewport boundaries takes place. The
requested graphical data is displayed projected orthogonally onto the device screen.
For most devices, the Z-value will be ignored and the X,Y components will be used as
screen addresses after conversion to device units.

To facilitate displaying different sections of the viewport, an additional window and dis-
play area routine has been implemented. ULOOK lets the user specify a portion of the
display surface (UDAREA) in device units. The window (UWINDO) dimensions are then
adjusted to move the UWINDO to display the equivalent portion of virtual space
(viewport). The effect is that of moving a template around on the viewport.

ix-2

o000

THIS PROGRAM DEMONSTRATES THE USE OF SEVERAL 3-D SUBROUTINES
AND THE DIFFERENCE BETWEEN ORTHOGONAL AND PERSEPCTIVE
PLOTTING.

CALL USTART
CALL UPSET ('SETD',1.)
CALL UPSET (TERMINATOR',";%
CALL USET ('PERC')
CALL UDAREA (0.,100.0.,100)
CALL AXIS
CALL USET (ORTH))
CALL BOX
CALL USET ('PERC")
CALL UDAREA (0.,100.,0.,100.)
CALL UWINDO (-100.,100.-100.,100.)
CALL USET ((PERSPECTIVE)
CALL BOX
CALL UEND
STOP
END
SUBROUTINE AXIS
CALL UOUTLN
CALL USET ('DASH)
CALL U3MOVE (-20.-20.,-20.)
CALL U3PEN (50.,-20.,-20.)
CALL UPRNT1 (X;,'TEXT")
CALL U3MOVE (-20.,-20.,-20.)
CALL U3PEN (-20.50.-20)
CALL UPRNT1 ('Y;','TEXT')
CALL U3MOVE (-20.,-20.,-20.)
CALL U3PEN (-20.,-20.,100.)
CALL UPRNT1 ('Z;,'TEXT")
CALL USET ('LINE")
CALL U3CSYS (25.25.25.1.,1.,1.,,10,,10,,0.)
CALL UVIEW (-20.-20.-150.,0.,0,0.)
RETURN
END
SUBROUTINE BOX
CALL U3MOVE (0.,0.0.)
CALL U3PEN (10.,0.0.)
CALL U3PEN(10.,10.0)
CALL U3PEN (0.,10.0)
CALL U3PENO0.0.0.)
CALL U3BMOVE (10.,0.,0.)
CALL U3PEN (10.,0.60.)
CALL U3PEN (10.,10.60)
CALL U3PEN (10.,10.0.)
CALL UBMOVE (0.,10.0)
CALL U3PEN (0.,10.60.)
CALL U3PEN (10.,10.60)
CALL U3BMOVE (0.,0.,0.)
CALL U3PEN (0.,0.,60.
CALL U3PEN (0.,10.,60.)
CALL U3PEN (0.,10.0)
CALL U3MOVE (0.,0.60.)
CALL U3PEN (10.,0.60)
RETURN
END
EXAMPLE IX-1

ix-3

=2

I
|
|
|
|
|
|
P s s e o
-

USTART

UPSET ¢/TERMINATOR/,’;’>
UPSFT C‘SPEED/, 128,

USET ¢/PERCENTUNITS’)

UDARFA ¢8,,128,,8.,188.)
UNINDO ¢~i28,,180. ~128",108.)
UERASE

AXIS
ggg? ¢/ ORTHOGONAL /)

UDAREA ¢2.,122.,0.,188,)
UWINDO ¢~ib®,,iB2. ~128,,188.)
USET <‘PERSPECTIVE’)

BOX

UEND

ix-4

SUBROUTINE AXIS

CALL UOUTLN

CALL USET (‘DASH’>

CALL USMOVE ¢-28.,-28.,-28.)
CALL USPEN (B8.,-28.,

CALL UPRNT! C/X)7, /TEXT?S
CALL USMOVE C—ZB.,-ZB.,—ZB b
CALL USPEN ¢~28.,50

CALL UPRNT! ¢‘Y,7, "réx'm
CALL USMOVE c-zz.,-zz.,-ze >
CALL USPEN ¢-28,,-28, m >
CALL UPRNTY ¢‘Z,7,7
CALL USET C/LINE’D

CALL U3CSYS ¢25.,2E.,26
CALL UVIEW ¢~2B.,-28.,~
RETURN

END

volestesto,18.,18,,8.0
188,,8.,8.,8.0

CALL USMOVE (2.,2..8.>
CALL USPEN 2.8
CALL USPEN Ci2.,12.,8.>
CALL USPEN <8.,18.,8.
CALL USPEN (@..8,.8.>
CALL USMOVE ¢iB..B8.,8.>
CALL USPEN ¢{B..B3.,88.>
CALL USPEN <i2..18.,88,)>
CALL USPEN ¢18..18.,8.D
CALL USMOVE ¢B..12.,8.>
CALL USPEN <8.,12,,88.)
CALL USPEN ¢12.,19.,88.>
CALL USMOVE (2..2..2.>
CALL USPEN ¢8.,8,,88.>
CALL USPEN <@..18.,68,>
CALL USPEN ¢2.,12..B.>
CALL USMOVE ¢2.,D..068.>
CALL USPEN ¢iB.,2.,68.>
RETURN

END

ix-5

oXoXe!

THIS PROGRAM DEMONSTRATES THE USE OF SEVERAL 3-D SUBROUTINES
TOPRODUCE A VILLAGE ON A TEKTRONIX 4014/4015 TERMINAL.

CALL USTART

CALL USET ('VIEW')

CALL UVWPRT (150.)

CALL UPSET (TERM','<)

CALL UWINDO (-100,,100.-100.,100.)
CALL UDAREA (0.7.0.7.)

CALL UVIEW (-40.,200.700.-20.,20.,0.)
CALL VILLAG

CALL UDAREA(7.1,14.1,0,7.)

CALL UVIEW (-70.-150.,50.0.,0.,10.)
CALL VILLAG

CALL UEND

STOP

END

SUBRGUTINE VILLAG

CALL USET ('XYZ')

CALL USET ('SYST)

CALL USET ('REFE’)

CALL U3CSYS(-50.,20.,0.1..1.,1.90.,0.0.)
CALL USET ('BLACK’)

CALL CHURCH

CALLUSET ('SYST")

CALLU3CSYS (24.,-19.0.,1.,1.,1,80.-90.,0)
CALL USET ('RED")

CALL SCHOOL

CALLUSET ('SYST)

CALL U3CSYs (70.,70.,0,0.7.0.7,0.7,0.0.0.)
CALL USET ('BLUE’)

CALL PiZZA

CALLUSET ('SYST)

CALL U3CSYS(0.,0.0.,1.1.1.,0.0.0.)
CALL USET ('‘BLACK’)

CALL ROAD

CALL USET ('SYST')

RETURN

END

SUBROUTINE SCHOOL

CALL USET ('SOFT)

CALL USET ('REFE’)

CALL UBMOVE (0.,0.0)

CALL URECT (50.,25))

CALL UBMOVE 3.4.0)

CALL URECT (7.8))

CALILU3MOVE (13.4.0)
CALL.URECT (17.8)

CALL UBMOVE (47.4.0.)

CALL URECT (43.8.)

CALL U3BMOVE (37.4.0.)

CALL URECT (33.8)

CALL UBMOVE (25,0.0)

CALL URECT (22.8)

CALL URECT (28.8))
DO101=3,43,10

X=|

CALL UBMOVE {X,15.,0)

iX-6

10

15

20

30

40

10

CALL URECT (X+4.20)
CALL USET (‘(WORK")
CALL U3CSYS (50.,0.0.,1.,1.,1.,0.,90,,0)
ISW=1

CALL U3MOVE (0.,0.,0)
CALL URECT (90.,25)

DO 201=3,83,10

X=I

CALL U3MOVE (X,16.,0.)
CALL URECT (X+4.,20)
IF(LEQ.43) GO TO 20)
CALL U3MOVE (X,4.0)
CALL URECT (X+4.8)
CONTINUE

CALL U3MOVE (45.,0.0.)
CALL URECT (42.8)
CALL URECT (48.8)
IFISW.EQ.2) GOTO 30
ISW=2

CALL U3CSYS (0.,0.,-90/,1.,1,,1.,0.,-90.,0)
GOTO 15

CALL UPSET ('VERT',3)
CALL UPSET ('HORV',3)
CALL UPRINT (0.21.5.'/ROOSEVELT ELEMENTARY SCHOOL<")
CALL USET ('REFE")
CALL UPSET (‘'ZVAL',-90.)
CALL U3MOVE (0.,0.-90.)
CALL URECT (50.,25)

DO 401=3,43,10

X=1

CALL U3MOVE (X-4.-80)
CALL URECT (X+4.8))
CALL U3BMOVE (X,16.,-90.)
CALL URECT (X+4.20)
CALL UPSET ('ZVAL',0)
RETURN

END

SUBROUTINE CHURCH
CALL USET ('REFE")
CALL U3MOVE (0.,0.0)
CALL URECT (30.,40.)
CALL UBMOVE (15.,0.,0.)
CALL URECT (10,10
CALL URECT (20.,10)
CALL UBMOVE (14.3.0)
CALL URECT (14.256)
CALL U3MOVE {15.75,3.,0)
CALL URECT (16.,6)

CALL U3MOVE (0.,40.0)
CALL U3PNE (30..40.0)
CALL USET (WORK/)
CALL U3CSYS (30.,0.0.,1.,1.,1.,0.,90,,0)
ISW=1

CALL U3MOVE (0.,0.,0)
CALL URECT (80.,40)

DO 201=20,40,10

X=1

CALL U3BMOVE {X,10.0.)

ix-7

20

30

CALL UBPEN (X,25.,0)
CALL UGPEN (X+4.30.,0)
CALL U3PEN (X+8.25.,0)
CALL UCPEN (X+8.,10.0)
CALL U3PEN (X,10.0)
[FISW,EQ.2) GOTO 30
ISW=2

CALL U3CSYs (0.0.0.,1.,1.,1.,0.,90.0)
GOTO10

CALL USET ('REFE’)

CALL UBMOVE (0.,40..-80.)
CALL U3PEN(15.,47.5,-80)
CALL U3PEN (30.40.-80.)
CALL UBMOVE (0.,0.,-80))
CALL E3PEN (30.0.-80)
CALL U3MOVE (15.,47.,5,-80.)
CALL U3PEN (15,47.5,0)
CALL USMOVE (10,45.0)
CALLUSPEN (10.45.,-10)
CALL U3PEN (15,47.5,-10)
CALL U3PEN(20.45.-10)
CALL UBPEN (20.45.0)
CALL U3PEN (15.,100..-5.)
CALL U3PEN (10.45.0)
CALL UBMOVE (10.45.,-10)
CALL U3PEN (15.,100.-5))
CALL U3PEN (20.45.-10.)
CALL U3BMOVE (15,100.,-5)
CALLUSBPEN (15,110.-5)
CALL UBMOVE (13,107..-5)
CALLUBPEN (17.,107.,-5)
RETURN

END

SUBROUTINE ROAD

CALL UBMOVE (-200.9.,0)
CALIL U3PEN (-9.9.0)
CALL U3PEN (-9.,200.,0)
CALL USMOVE (200.9.0)
CALL U3PEN (2.9.0)

CALL U3PEN (9.,200.,0)
CALL UBMCVE (-200..-9.,0))
CALL U3PEN (-9.-9.,0)
CALL U3PEN (-9.,-200.,0)
CALL UMOVE (9.,-200.,0)
CALL UBPEN (9.-9.,0)
CALL U3PEN (200.-9.0.)
RETURN

END

SUBROUTINE PIZZA

CALL USET ('SOFT")

CALL USET ('REFE)

CALL UBMOVE (0.,0.,0)
CALL U3CSYs(0.0.0.,1.,1.1.,90.,0.0.)
CALL U3PEN (40.,0.0)
CALL U3PEN (20.50.,0)
CALL U3PEN (0,0.0)

CALL UBMOVE (20.,0.,0)
CALLURECT (17.58)

ix-8

CALL URECT (22.58)

CALL UBMOVE (10.,2,0)

CALL URECT (15.8.)

CALL UBMOVE (30.,2.0.)

CALL URECT (25.8)

CALL UBMOVE (13,10.0.)

CALL URECT (27.,15)

CALL UPSET ('HORV',2)

CALL UPSET ('VERT', 4)

CALL USET ('ITAL")

CALL UPRINT (15.65,1 1.2/PIZZA<)
CALL USET (‘GOTH)

CALL UPSET (VERT',.4)

CALL UPSET ('HORY',.3)

CALL UPRINT (20.95,5./IN<’)
CALL USET ('WORK’)

CALL U3CSYS (40.0.0,1.,1,1.0.-1 80.0.)
CALL UPRINT (20.65,5.,'OUT <)
CALL USET ('REFE’)

CALL U3MOVE (0.0.-60.)

CALL U3PEN (40.0.-60)

CALL U3PEN (20.50.-60)

CALL U3PEN (0.0.-60.)

CALL UBMOVE (18.5,0.-60.)
CALL UPSET ('ZVAL',-60))
CALL URECT (21.5,8)

CALL UPSET (‘ZVAL',0)

CALL USET ('REFE’)

CALL U3MOVE (0.0.0.)

CALL U3PEN (0.0.-60))

CALL U3MOVE (40.0.,-60.)
CALL U3PEN (40.0.0)

CALL U3MCVE (20.50.0)

CALL U3PEN (20.50.-60.)

CALL USET (WORK')
CALLUSET ('YXZ')

CALL U3CSYS(0,0.0,1.1.1 .,-ATAN2(50.,20.)'57.29577+90.,90.,O.)
CALL USET ('XYZ')

CALL UPSET ('HORI',2)

CALL UPSET ('VERT',2.5)

CALL UPRINT (5.5./GIANT PIZZA $8<)
CALL USET ('REFE’)

RETURN

END

EXAMPLE IX-2

ix-9

USTART

USET C‘VIEWDISTANCE')

UVWPRT

(168.>

UPSET C/TERMINATOR’,? ;%>
URINDO <-1“.¢ ‘ez-o-‘agsp l%.)

UDAREA <2,,!8.8,
UVIEK (-42,., 228,
VILLAG

UEND

ix-10

e.. 18,
¢7§"-n01no'al>

12

16

SUBROUTINE VILLAG

CALL USET <‘XYZ /0

CALL USET (/SYSTEMAXIS!D

CalLl. USET ¢’ ‘9

CALL USOSYS (-58.,23.,3.,1..1.,1..99.,8-.9.)
CALL USET (‘BLACK/)

CALL CHURCH

CALL USET (‘SYSTEMAXIS!D

CALL USCSYS ¢24.,~!8.,8.,1..1.,1.,88,,-68,,8.0
CALL. USET C‘/RED /O

CALL SCHOOL

CALL USET (‘SYSTEMAXISO

CALL USCSYS ¢79.,782..,0.,8.7,8.7,08.7,8.,8.,8.0
CALL USET (’/S8LUE)

CALL PIZZA

CALL USET (‘SYSTEMAXIS/D

CALL USCSYS ceugeu‘eogt0110¢104°0.°0180>
CALL USET (’/BLACK‘)

CALL ROAD

CALL USET (‘SYSTEMAXIS’D
RETURN

END

SUBROUTINE L

CALL USET ¢‘/8OFT/

CALL USET ¢’ ‘9

CALL URECT <49.,8.0
CALL USMOVE ¢37.,4.,8.0
CALL URECT (3S,.,8,0

CALL .
PO 1B I =98, 49, 1
X =X

CALL USMOVE (X, 18,,8.>

CALL URECT (X+4.,2B.>

CALL USET ¢‘WORKINGAXIS'>

CALJ- USCSYS Cm.,eu,a.,lu,lu,1.,3.,”..3.3
ISH = |

CALL USMOVE ¢8.,8.,8.)

CALL URECT ¢88..26.>

po2BI=S, €3, 18

X=m I

CALL USMOVE ¢X,16.,8.>

CALL URECT (X+4,,28.>

ix-11

IF <I ,EQ, 43) 80 TO 20
CALL USMOVE (X, 4.,8.>
CALL URECT (X+4,,8,)
CONTINUE

CALL USMOVE (456..,0,,8.)
CALL URECT (42,.,8.)

CALL URECT (48,,e.)

IF (IsW ,EQ, 2) 80 TO 3@
IsW = 2

CALL USCsYs <e.,e.,-s8.,!.,1.,1..8,,-88,,8,)

B0 TG 18
CALL. UPSET (‘VERTICAL’,S.>
CALL UPSET (‘HORIZONTAL’,S.)

CalL UPRINT (B.,21,.5,/ ROOSEVELT ELEMENTARY SCHOOL; ‘>
cEAXIS?)

CALL USET <’REFEREN
CALL UPSET C‘/ZVALUE‘,-92,)
CALL. USMOVE (B.,8.,-88.)
CALL URECT (&2, 287>

DO 42 I » 8, 43, 1B

X m T

CALL USMOVE (X, 4.,-80.)
CALL. URECT (Xv4..8.)
CALL. USMOVE (X, 18.. -58.)
CALL URECT (X+4.,28.)
CALL UPSET C/ZVALUE’.8.)
RETURN

ERO

SUBROUTINE CHURCH

CALL USET (/REFERENCEAXIS!)

CaLL UBMOVE (B,,R..R.)

UA}.&« UR{«&Y C%. ¢ 400)

Call USMAVE (1B.,B.,

Call URECT <16.,12.>

CAl... URBLT C28.,12.)

Cal.l. USMOVE (14,,9,,
3

. . 'o
Call. USMOVE (16, 55

CAl.. URECT ¢l16,,0,
CAl., UBMOVE (2, ,48,,8

CALL USPEN C32..40.,0
Call. USET ¢/WORKINGAXIS’)

(‘A:&.,J UﬁﬁSYS 433.,3.,9.,1-,1.,1.,3..“.,9.)

ISW = |
CAle. USMOVE ¢B8.,2.,2.)
ChALL. UREDT (B2, 48 >
PO R8I ~ 2B, BB, 1B
X m I

CALL USMOVE (X, 18..8,
CALL USPEN (X, 25,8,
CALL UZPEN (X+4,.92.
CALi. UBPEN C(X+8..25.
CALL UBPEN (X+@. 18,
Canl USPEN (X, :18,,8,
I? (ISW ¥U. 2> @0 T

ix-12

ISW = 2

CALL USCsYs ¢2..2..8..1.,1.,1..8.,88,,8.)
€0 T0 18

CALL USET (‘REFERENCEAXIS)
CALL USMOVE (2., 4@.,-€8,)
CALL USPEN C15..47.5,~88,)
CALL USPEN CSB.,‘B.,"‘B.)
CALL USMOVE (2..8,.-88,>
CALL USPEN (32..2..-82.)
CALL USMOVE <15.,47.5,~88.>
CALL USPEN C15.,47.5,8.)
CALL USMOVE (1D, 46..8.>
CALL USPEN CIB..45..,-1B,>
CALL USPEN C15..47.5,-18.>
CALL USPEN <2B..45.,-18.)
CALL USPEN (28,,48,,8.)
CALL USPEN (i5..188,,~5.)
CALL USPEN C12..48,.8.)
CALL USMOVE (12 ,46.,~18.)
CALL USPEN ¢16..188..-6.>
CALL USPEN (28..4E,.-18.)
CALL USMOVE (i5.,1@8.,~5,)
CALL USPEN ¢15..118,.~6.)
CALL USMOVE (18.,187.,-6.)
CALL USPEN ¢17.,187.,-6.)
RETURN

END

CALL USPEN (8.
CALL USPEN (288,
RETURN

ix-13

SUBROUTINE PIZZA

CALL USET ¢‘SOFTWARE CHARACTERS’)
CALL USET (‘REFERENCEAXIS’)

CALL USMOVE <2.,8.,8.)

CALL USCSYS <@..8..8..1..1.,1.,88..8.,8.)
CALL USPEN C42..8..8.5

CALL USPEN (28..88°,8.)

CALL USPEN <@..B.,8%)

CALL USMOVE (28..8..8.)

CALL URECT <17.5.e.5

CaLL URECT ¢22.5,8.)

CALL USMOVE (18..2..8.)

CALL URECT (iE6.,8.)

CALL USMOVE (32.,2.,8.)

CALL URECT ¢25.,8.))

CALL USMOVE (13.,18.,8.)

CALL URECT <27..16.)

CALL UPSET (‘HORIZONTAL’,2.)

CALL UPSET (‘VERTICAL',4.)>

CALL USFT ¢‘ITALICS’)

CALL UPRINT ¢16.66,11.2, ‘PIZZA;?)
CALL USET </GOTHIC’)

CALL UPSET (’VERTICALY, .4

CALL UPSET (/HORTZONTAL’, .3
CALL UPRINT <22,88,5.,7IN;’)

CALL USET (’WORKINGAXIS’)

CALL USCSYS (4@.,8..8.,1..1.,1.,8.,~168.,8.)

CALL UPRINT (28,68,5.,/0UT,’>
CALL USET (‘REFERENCEAXIS‘)
CALL USMOVE ¢2.,2.,-68.)

CALL USPEN (42..2..-82.>

CALL USPEN (22, 50, -68.)
CALL USPEN ¢@..2.,-68.)

CALL USMOVE (i8.5.8.,-68,)
CALL UPSET ¢‘zva.lE’ -62.5
CALL URECT <2!.E,8.)>

CALL UPSET (/ZVALUE? B.)

CALL USET ¢/REFERENCEAXIS’)
CALL USMOVE ¢@..8..8.)

CALL USPEN ¢2..8.. -62.)

CALL USMOVE ¢4b..B., -62.>
CALL UZPEN c4@..8..8.)
CALL USMovE (28’ 62.,8.>
CALL USPEN ¢22.. 52.,-628.)
CALL USET ¢/WORKINGAXIS’)

CALL USET </YXZ />

CALL USCSYS gg.,z.se.,x.,x.,z.,-ATAuz (EB.,28,)nE7.28577+88.,

CALL USET <’/XYZ ¢5

CALL UPSET <‘HORTZONTAL’,2.)

CALL UPSET (/VERTICAL’,2.6)

CALL UPRINT ¢6.,6.,’GIANT PIZZA &€,'>
CALL PJxie:r-:'r ¢*REFERENCEAXIS />

ix-14

CHAPTER X
GRAPHICAL DATA STRUCTURE PROCESSING

A feature which is contained within 3D GCS is the ability to create, save, and later recre-
ate pictures as they are drawn. It permits the user to specify the description of a com-
monly used graphic image once, store it, and then invoke this description whenever
necessary. This facility is the implementation of an internal high-level GCS data struc-
ture.

Before the user can define or use a data structure, he must first provide a work file for
GCS to use. This work file can be specified by an UPSET (‘LIBRARYFILE', file number)
call. The file will then be used to maintain the user's currently active library of GCS
graphics data structures.

To build a data structure, the user must first call a routine USTRCT (NAME) which initi-
ates construction of a data structure under the specified name. From then on all calls to
the GCS routines listed in Table X-1 will be saved as elements of the data structure.
Whenever the specification of the object has been completed, a call is made to UTERM
(NAME) to terminate the building process. The resulting data structure is then stored on
the library file. During the building process, the build mode may be turned off by specify-
ing ‘NOBUILD'. Construction may be resumed by then specifying ‘BUILD’. 'BUILD’ is au-
tomatica'ly specified when USTRCT is called and ‘NOBUILD' is set when UTERM is
called. Normally, the structure being built will be displayed during the construction pro-
cess. If the user does not wish to view the structure he may specify ‘NOEXECUTE'. If
this is done, the structure element will be saved but no visible output will appear. The
user may return to viewing his construction process by setting ‘EXECUTE' which is the
default mode.

To invoke an already created structure, the user uses the USCALL or UCALL routines
specifying the name, position, and orientation of the data structure. The data structure
specified will be displayed as indicated. If another structure is currently being built
when this call takes place, a USCALL structure element for the invoked structure will be
inserted in the active structure.

When the user terminates the GCS program, he may wish to save his library file so it can
be restored at a later time. A routine called UTILTY is used to perform several utility
functions concerned with maintaining the library file. To save the current library file, the
user simply invokes UTILTY (‘SAVE’, file number). This file number must be different
from the library file. All data structure contained in the library will be reformatted into a
standard Hollerith card format and written to the save file. To restore a saved file to the
library file, the UTILTY (‘LOAD’, file number) function would be used. Other UTILTY
functions exist to MERGE a save file into the existing library file, PURGE the existing libr-
ary file, and DELETE or RENAME structures in the library file.

x-1

Function

UARC
U3CALL
U3CSYS
UCRCLE
U3DRAW
U3MOVE
U3PEN
U3PRNT
UPRNT1
UPSET
U3ROTA
U3SCAL
USET
U3WRIT
UWRIT1
UPSET
U3PRNT
UBWRIT
UPRNT1
UWRIT1
URECT
UFONT

TABLE X-1

STRUCTURE ELEMENT TABLE

Opcode

—
QOO NOUTHAWN =

—_ —h
W —

14

No. Real

ONOOLWO - hRrOWW-=HAWWWWWOOW

x-2

No. Alpha

“ONMN=2=2N-0—-00—=2—~-00000ONO

Argument
Sequence

R.R,R
RR.RR,RR,
R.R.RR,RR
R.R.R
RR.R
R.R.R
R.RR
R.R,RR
AR
AR
R.RR
R.R.R
A
RR.R.R
AR
AA
RR.RA
R.RR.A
AA
AA
R.R

A

R.R.RA
R.R

OO0 0000

OO0

THIS PROGRAM DEMONSTRATES THE SAVING OF DATA STRUCTURES AND
SHOWS THE DIFFERENCE BETWEEN ORTHOGONAL AND PERSPECTIVE
PLOTTING.

ATTACH A PERMANENT FILE TO SAVE THE DATA STRUCTURES ON A
HONEYWELL COMPUTER.

CALL ATTACH (8, /TEK3DEMO/SAVE;, 3,0,IST))
CALL USTART

CALL UPSET ('LIBR',1.)

CALL UPSET ('SETD',1.)

CALL UPSET (TERMINATOR',";")
CALL USET ('PERC’)

CALL UDAREA (0.,100.,0.,100.)

CALL UOUTLN

CALL UWINDO (-100.,100.-100.,100.)
CALL USTRCT ('AXIS')

CALL AXIS

CALL UTERM ('AXIS")

CALL USET ('ORTH")

CALL U3CSYS (25.25.25.,1.,1.,1,10,,10.0)
CALL UVIEW (-20.-20.-150.0.0.0.)
CALL USTRCT ('BOX")

CALL BOX

CALL UTERM {BOX)

CALL USET ('PERSPECTIVE’)

CALL BOX

CALL UTILITY ('SAVE'S8.)

CALL UEND

STOP

END

SUBROUTINE AXIS

CALL USET 'DASH)

NEED TO DO A MOVE INSIDE STRUCTURE

CALL U3MOVE {-20,-20.-20)
CALL U3PEN (50.,-20.,-20.)
CALL UPRNT1 ('X;'/TEXT')
CALL U3MOVE (-20.,-20.,-20))
CALL U3PEN (-20.50.-20.)
CALL UPRNT1 ('Y}, 'TEXT')
CALL U3BMOVE (-20.,-20.,-20))
CALL U3PEN (-20.-20.,100)
CALL (UPRNT1 ('Z;',"TEXT)
RETURN

END

SUBROUTINE BOX

CALL USET ('LINE')

CALL UMOVE (0.,0.,0.)

CALL U3PEN (10.0.0)

CALL U3PEN (10.,10.0.)
CALL U3PEN (0.,10.0.)

CALL UBPEN(0.0.0)

CALL UBMOVE (10.0.0.)
CALL U3PEN(10.,0.60.)
CALL U3PEN (10.,10.60.)
CALL U3PEN (10,10.0)

x-3

CALL USMOVE (0.,,10.,0))
CALL U3PEN (0,,10.,60.)
CALL U3PEN (10,,10.60.)
CALL UBMOVE (0,,0.,0)
CALL U3PEN (0.0.,60.)
CALL U3PEN (0.,10.,60.)
CALL U3PEN (0.,10.,0.)
CALL U3BMOVE (0.,0.60.)
CALL U3PEN (10.,0.60.)
RETURN

END

EXAMPLE X-1

x-4

—— —— = —

|
|
I
1
1
I
L

ATTACH (@, //TEXSDEMO/SAVE,’,S,8,18T,>

USTART

UPSET C/TERMINATOR’, ‘s’
UPSET (‘/SPEED’, 128,
UPSET C/LIB ¥
UPSET (/SETDASHY, 1.
USET (’/PERCENTUNITS’)

UDAREA (B,,100.,8,,1080.)0
UERASE

UOUTLN

WINDO c-iwoa$wo;—$”oaiwo>
USTRCT C/AXIS ‘O

AXIS

UTERM C/AXIS ‘D

USET </ORTHOGONAL’D

Uschs czs.,zs.'go¢io'lo‘io‘izopizoozo>
Wm C-n.,-no,-lm.,zo,a.,BoD

USTRCT ¢‘BOX ‘)

AV A VLV S

UTERM C/BOX 7D
E!.%!(T C/PERSPECTIVE’D

UTILTY (/SAVE’, 8.)
UEND

x-5

SUBROUTINE AXIS

ALL USET C/DASH’>
CALL USHOVE 2. -20. 28,
CALL USPEN <&8.,
CALL UPRNTI C/X; 7 (TEXTSS”
CALL USHOVE (-28.,-28.,-28.)
CALL USPEN <-22.,58.,-28.)
CALL UPRNT! <Y, %, /TEXTS
CALL USMOVE (-28.,-28,,~28.)
CALL USPEN ¢-22.,~28.,188.5
CALL UPRNT! ¢‘Z;%, /TEXT/>
RETURN
END

HUHWTIN!
ALl USET C‘.I-.INE" J

CALL USMOVE (18, 8. 2.>
CALL USPEN ¢i@..B. 82.5
CALL USPEN CiB,. |2, 88.)
CALL USPEN Cl1R..1R,,B.)
CALL USMOVE ¢@. 18.°8.>
CALL USPEN c@,.l2,.88.5
CaLl USPEN C12..12..80.)
CALL USMOVE ¢2.'B,.B.)>
CALL USPEN ¢B.,B..88.5
CALL USPEN CB..12.,88.)
CALL USPEN CP..1@..8.5
CALL USMOVE (2..2..88.)
CALL USPEN CiR..2..80.5
RETURN

END

x-6

o000

THIS PROGRAM DEMONSTRATES THE LOADING OF DATA STRUCTURES
THAT WERE PREVIOUSLY SAVED ON A PERMANENT FILE ON A HONEYWELL
COMPUTER.

CALL ATTACH (8,/TEK3DEMO/SAVE;',3,0,IST)
CALL USTART

CALL UPSET ('LIBR',1)

CALL UPSET ('SETD',1)

CALL USET ('PERC)

CALL UDAREA (0.100.0.,100)

CALL UOUTLN

CALL UWINDO (-100,,100.-100.,100.)
CALL UTILTY (LOAD',8)

CALL U3MOVE (0.0.0)

CALL UINVOK (‘AXIS")

CALL USET (ORTH))

CALL U3CSYS (25.,25.25.,1.1,1,10,10,0)
CALL UVIEW (-20.,-20.-150.0.0.,0)
CALL U3MOVE (0.0.0)

CALL UINVOK ('‘BOX)

CALL USET ('PERSPECTIVE')

CALL USMOVE (0.0.0)

CALL UNIVOK ('BOX’)

CALL UEND

STOP

END

EXAMPLE X-2

ATTACH (8, //TEKSDEMO/SAVE,/, 3,8, IST,>
USTART

CALL
CALL
CALL UPSET ¢/LIBRARY,!.>
CALL UPSET <‘TERMINATOR’. ;7>
CALL. UPSET <’/SPEED/,128.5
CALL USET (‘PERCENTUNITS’>
CALL UDAREA ¢2,,122.,2.,120.>
CALL UERASE
CALL UOUTLN
CALL UWINDO ¢~1R2.,188.,-128., 188,
CALL UTILTY C/LOAD?,8.>
CALL. USMOVE (2..8..8.5
CALL UINVOK C/AXIS /3
CALL USET ¢‘ORTHOGONAL‘)
CALL USCSYS (25.,2E.,25,,1.,1.,1.,18,,12.,8.>
CALL UVIEW ¢-28.,-28.,-152..2..08..8.5
CALL USMOVE ¢2..8.,8.5
CALL UINVOX C/BOX ~¢3
CALL USPT (’/PERSPECTIVE’)
CALL USMOVE ¢@.,e..8.>
CALL UINVOK C/BOX " ¢3
UEND

x-8

o000

THIS PROGRAM DEMONSTRATES THE LOADING OF DATA STRUCTURES
THAT WERE PREVIOUSLY SAVED ON A PERMANENT FILE ON A HONEYWELL
COMPUTER FOR DISPLAY ON TEKTRONIX 4014/401 5 TERMINAL.

CALL ATTACH (8/TEK3DEMO/SAVE;",3,0,IST)
CALL USTART

CALL UPSET ('LIBR',1)

CALL UTILITY (LOAD'8.)

CALL UPSET (TERM', <)

CALL USET ('VIEW')

CALL UVWPRT (150.)

CALL UWINDO (-100,100.-100.,100)

CALL UVIEW (-40.,200.,70.,-20.,20.0)

CALL UDAREA (0.7.0.7.)

CALL VILLAG

CALL UDAREA (7.1,14,1.0.7)

CALL VIEW (-70.-160.50.0.0.,10)

CALL VILLAG

CALL UEND

STOP

END

SUBROUTINE VILLAG

CALL USET ('XYZ')

CALL USET ('SYST')

CALL USET ('REFE’)

CALL USET ('BLACK’)

CALL U3CALL (-50.20.0.,1.,1.1 .,90.,0.,0./CHURCH)
CALL USET ('RED’)

CALL U3CALL (24.-19,0,1,1.1 ,90.-90.0./SCHOOL)
CALL USET ('BLUE")

CALL U3CALL (70.70.,0.0.7,0.7,0-.7,0.0.0./PIZZA’)
CALL USET ('BLACK)

CALL U3CALL (0.,0.0.1.1.1.,0.0.0./ROAD’)
RETURN

END

EXAMPLE X-3

x-9

CALL ATTACH (@, ' /TEKSDEMO/SAVE, /3,8, IST, >
USTART

CALL UPSET C/LIBRARYY,!,>

CALL UTILTY <‘LOAD’,8,)

CALL UPSET <‘TERMINATOR’,’;’>

CALL USET (/VIFWDISTANCE?)

CALL UVWPRT (1B8,)

CALL UWINDO ¢(~iR2,,180.,~188,, 188.)>

CALL UVIFEW <~42.,2820,,78.,-28,,28,,8.)
VILLAG

CALL UEND

SUBROUTINE VILLAG

CALL USET <’XYZ />

CALL USET (‘SYSTEMAXIS‘>

CALL USET (’/REFERENCEAXIS‘)

CALL USET (’/BLACK’)

CALL USCALL ("Sa.,zz..e..l..l..l..“..a..a..'m'J
CALL USET C’/RED ¢

CALL USCALL ‘24.,"1‘.48.,1..1.,1.,“.,—”n¢zlplm,>
CALL USET <‘BLUE’)

CALL USCALL (7e.,78.,8.,2.7,2.7,8.7,2.,8.,8., "PTZZIA?)
CALL USET (’/BLACK’)

CALL USCALL e.,e.,e.,1.,1.,1.,8.,8.,8,,/ROAD /)
o

CHAPTER XI
PICTURE SEGMENTATION AND NAMING

Refresh Graphlc Facilities

Many computer graphics display applications require only a static display in order to
convey information. That is, the complete picture provides all of the relevant information
that can be derived from the data used to produce the display. In some situations
however, a static display provides incomplete information. For example, the plot of a
missile trajectory does not reveal the relative speed of the projectile while in flight. In
such situations, a dynamic display which portrays motion prévides more information to
the user than does a static display. GCS provides a facility for the dynamic display of
information and for selective erase of information on refresh graphic display devices if
available. The facility allows the user to identify and bracket a portion or portions of his
display, assign a name to the section, turn the named section on or off, and replace a
named section with a new definition of the section.

The basic unit of information of a dynamic display is the ‘frame’. A frame represents a
portion of a display having a known origin and a known termination. The GCS
subroutines which delimit the start and the end of a frame are UFRAME and UFREND.
They are invoked as follows:

CALL UFRAME (NAME)
CALL UFREND (NAME)

where NAME is an eight character alphanumeric variable or constant. The subroutine
UFRAME indicates the starting point of the framed information and subroutine UFREND
denotes the ending point. Note that multiple frames may be defined, but nesting of
frames is not permitted; that is, subroutine UFREND must be called to ‘close’ the current
frame before the subroutine UFRAME is invoked to ‘open’ another frame.

Whenever a UFRAME/UFREND pair are invoked to replace the previous occurrence of
the named frame, the previous occurrence is deleted upon completion of the new version
of the frame, as signalled by the call to UFREND for that frame. Thus the complete frame
will replace the previous complete frame. This is the default condition in GCS and is
Known as ‘invisible’ building of a frame. It can be specified by the following invocation to
USET:

CALL USET ('INVISIBLE)

For some dynamic graphic applications, it is preferable to see the frame being built line-
by-line. In this case, the previous frame must be deleted when the call to UFRAME is
made for frame redefinition. The user can request the visible building of a frame by the
following call:

CALL USET (‘VISIBLE)

After a frame is completely built, and terminated by a call to UFREND, it may be selective-
ly ‘turned on’ and ‘turned off’ by the use of the following GCS subroutines:

CALL USHOW (NAME)
CALL UNSHOW (NAME)

where NAME is the eight character alphanumeric variable or constant which is the name
assigned to the frame upon which the operation is to be performed. When USHOW is
invoked for an invisible frame, the frame is made visible: if UNSHOW is invoked for a visi-
ble frame, the frame is made invisible.

Xi-1

Note that the GCS subroutine UERASE affects the status of frames by completely remov-
ing all frames and frame names from GCS. Thus if USHOW or UNSHOW are invoked
after a call to UERASE, an error will be indicated. In addition, it is improper to call
UERASE while a frame is ‘open’, i.e., after a call to UFRAME and before a call to UFREND.

Xi-2

OO0 000 OO0

OO0 O000

o000

SAMPLE PROGRAM USED TO ILLUSTRATE MULTIPLE ENTITY FRAMING.
INITIALIZE VARIABLES, ENTER GCS, OUTLINE VIRTUAL WINDOW.

X-10.0

Y=80.0

CALLUSTART
CALLUOUTLN

CALL UPSET (‘'LIBRARY', 1)

DEFINE A LOOP TO DRAW A TRIANGLE AND SQUARE DYNAMICALLY.
DO11=128

INDICATE THE BEGINNING OF THE TRIANGLE FRAME DEFINITION, THEN
PROVIDE TEN COMMANDS REQUIRED TO DRAW THE FIGURE.

CALL UFRAME ('TRIANGLE')
CALL UMOVE (X,X)

CALL UPEN (X,(X+5.0))
CALL UPEN ((X+5.0),X)
CALL UPEN (X,X)

INDICATE THE TERMINATION OF THE TRIANGLE FRAME, AND THE
BEGINNING OF THE FRAME DEFINITION FOR THE SQUARE.

CALL UFREND (TRIANGLE')
CALL UFRAME ('SQUARE')

NOW PROVIDE THE PEN COMMANDS REQUIRED TO DRAW A SQUARE.

CALL UMOVE (X,Y)
X=X+10.0

Y=Y-10.0

CALL URECT ((X-5.0),Y +15.0))

INDICATE THE TERMINATION OF THE SQUARE FRAME, AND LOOP.
CALL UFREND ('SQUARE’)

CONTINUE

CALL UEND

STOP
END

EXAMPLE XI-1

Xi-3

£ ’,
;too: :u:.
;ooo: Eo.o.'
:ooo: .‘.
:oot: :0:0
.‘. :loo:
:oo.l :ooo:
Eo.o.. Eooo:
.‘. :...:
:o:l ;...:
so.o.l
X = 12,2
Y = 82,8
CALL USTART
CALL UPSET C/LIBRARY’,1.)
CALL UGUTLN

DO | I =1, 8
CALL UFRAME ¢’/TRIANGLE/)
CALL UMOVE X, X>

CALL UPEN <X, CX+E.8))

CALL UPEN (¢%+5.2),%)

CALL UPEN ¢X,X>

CALL UFREND ¢’/TRIANGLE’D
CALL UFRAME ’/SQUARE’)

CALL UMOVE ¢X,Y)>

Xm X+ 18,8

CALL URECT CCX~5.8),CY+{E.B>)>
CALL UFREND <’/SQUARE‘>
CONTINUE

CALL UEND

STOP

END

Xi-4

oXeloXe

OO0 eXoXoXe

eXoXe;

OO0 000

SAMPLE PROGRAM USED TO ILLUSTRATE GCS FRAMING FACILITIES.
DEFINE INITIAL POSITION, ENTER GCS, OUTLINE VIRTUAL WINDOW.

CHARACTER CHAR*1
X=10.0

CALL USTART
CALLUOUTLN

CALL UPSET ('LIBRARY',1.)

DEFINE A LOOP TO DYNAMICALLY DISPLAY 8 DEFINITIONS OF A TRIANGLE.
INDICATE THE START OF THE ‘FRAMED’ INFORMATION.

DO11=18
CALL UFRAME ('TRIANGLE’)

PEN COMMANDS TO DEFINE THE TRIANGLE. A POSITIONAL VARIABLE IS
ALSO UPDATED WITHIN THIS LOOP.

CALL UMOVE (X,X)

CALL UPEN (X,(X+5.0))
CALL UPEN ((X+5.0),X)
CALL UPEN (X=X+10.0

INDICATE THE TERMINATION OF THE TRIANGLE FRAME DEFINITION.

CALL UFREND (' TRIANGLE')

CONTINUE

'DEACTIVATE’ THE EIGHTH FRAME DEFINITION OF THE TRIANGLE THAT WAS
DEFINED; |.E., MAKE IT 'INVISIBLE".

CALL UNSHOW ('TRIANGLE')

REQUEST A CHARACTER FROM THE KEYBOARD; ACTIVATE THE LAST
FRAME IF THE LETTER 'T' IS ENTERED; OTHERWISE, TERMINATE.

CALL UAIN (CHAR)

IF (CHARNE.T) GO TO 3
CALL USHOW ('TRIANGLE')
GOTO?2

CALL UEND

STOP

END

EXAMPLE XI-2

Xi-5

CHARACTER CHARw|
X»i8.2
CALL

USTART
CALL UPSET C‘/LIBRARY‘,{.>
UQUTLN

PO | I = |, 6
CALL UFRAME C’/TRIANGLE’>
CALL UMOVE ¢X,X>

CALL UPEN <X, ¢X+5.8))

CALL UPEN ¢¢X+5.2),X)

CALL UPEN ¢X,X>

X=X+ {0,8

CALL UFREND ¢‘TRIANBLE’)D
CONTINUE

CALL UNSHOW C’/TRIANGLE’)
CALL UAIN <CHARD

IF CCHAR .NE, ‘T/> G0 TO 8
CALL USHOW C/TRIANGLE’)

Xi-6

000000000

OO0

000

SNONQ)

SAMPLE PROGRAM USED TO ILLUSTRATE ELEMENTARY FRAMING AND

ROTATION. THE ROTATIONAL TECHNIQUE EMPLOYED IN THE PROGRAM IS

QUITE LIMITED, HENCE THE USER IS DIRECTED TO USE THE GCS

SUBROUTINE ‘UCOSYS’ FOR APPLICATIONS REQUIRING MORE ROTATIONAL

CAPABILITIES.

INITIALIZE VARIABLES, ENTER GCS, DEFINE NEW VIRTUAL WINDOW, AND
OUTLINEIT.

DATA DEGREE/0.0/

CALL USTART

CALL UWINDO (-50.,50.,-50.,50.)
CALL UOUTLN

CALL UPSET ('LIBRARY', 1)

SPECIFY THAT POLAR COORDINATES ARE TO BE USED TO SIMPLIFY THE
PROGRAM, AND DEFINE LOOP TO DRAW A SQUARE DYNAMICALLY.

CALL USET (POLAR’)
DO11=1,12
DEGREE=DEGREE=30.0

INDICATE THE BEGINNING OF FRAME DEFINITION FOR THE SQUARE, AND
PROVIDE THE NECESSARY COMMANDS TO ROTATE AND DRAW IT.

CALL UFRAME ('SQUARE’)

CALL UMOVE (25.,DEGREE)
CALL UPSET (ROTATE', DEGREE)
CALL USET ('RELATIVE')

CALL UPLYGN (0.0.4.5)

CALL USET (ABSOLUTE)

INDICATE THE TERMINATION OF THE SQUARE FRAME, AND THE LOOP.

CALL UFREND ('SQUARE’)
CONTINUE

CALL UEND

STOP

END

EXAMPLE X1-3

Xi-7

° °
.
L] [
*]
.
. .o‘
* 0
0, o?
* To
o .
] U
Q Q
. 0
% *
l..
20000y
2 .
M L]
M .
4 o
®e0000
°®
°? o
o '
.
|/ °
* (]
. .
o 0
o®
0
* T
[*
0 U
. .
D) 0
o.. °
)

DATA g§$REE/8 8/
CALL UPSET C‘LIBRARY’,

CALL UWINDO C-BO..BO..-SO .58.)

CALL UOUTLN
CALL USET C’POLAR’D
PO § I = {, 12

DEGREE = DEGREE + 33.0
CALL UFRAME ¢’8QUARE’)
DESREE)

CALL UMOVE €25,

CALL UPSET C/ROTATE, oecazz>

CALL USET ¢’/RELATIVE’
CALL UPLYGN ¢8.,8
CALL USET ¢’/ABSOLUTE’)

CONTINUE
CALL UEND
STOP
END

..5.
CALL UFREND C'SQUARE')

xi-8

CO0OOOO0

OO0OO00O00 oXoNoNOXQ) OO0 OO0 OO0

oo

SAMPLE PROGRAM ILLUSTRATING APPLICATIONS OF GCS SUBROUTINES
'USHOW’ AND 'UNSHOW’. A SQUARE WILL BE SIMULTANEOUSLY SCALED,
ROTATED (ORIENTED), AND TRANSLATED IN NINE DISCRETE PHASES, WITH
A SEPARATE FRAME REPRESENTING EACH PHASE.

INITIALIZE VARIABLES, ENTER GCS, AND OUTLINE VIRTUAL WINDOW.

CHARACTER FRAME*8(9)

DATA FRAME/'A','B’,'C’,'D’, 'E", 'F', "G, "H', "I'/
CALL USTART

CALL UOUTLN

CALL UPSET (LIBRARY',1)

SETUP LOOP TO DEFINE EACH OF THE NINE FRAMES FOR THE SQUARE.

DO11=19
X=10.0"FLOAT(l)

INDICATE THE BEGINNING OF FRAME DEFINITION FOR THE SQUARE, AND
PROVIDE COMMANDS TO SCALE, ROTATE, AND TRANSLATE IT.

CALL UFRAME (FRAME(I))
CALL UMOVE X,X)

CALL UPSET (ROTATE', X)
CALL USET ('RELATIVE')

CALL UPLYGN (0.0.4.FLOAT(I)
CALL USET (ABSOLUTE’)

INDICATE THE TERMINATION OF EACH FRAME, AND CALL UNSHOW TO MAKE
THE NEWLY DEFINED FRAME INVISIBLE.

CALL UFREND (FRAME(I))
CALL UNSHOW (FRAME (1)
CONTINUE

AT THIS POINT, ALL OF THE FRAMES HAVE BEEN DEFINED, NOW WE WILL
DISPLAY EACH OF THE FRAMES IN SUCCESSION, FOR A TOTAL NUMBER OF
90 CYCLES = 10 OCCURRENCES OF EACH FRAME.

DO 21=1,90
J=MOD((I-1).9) +1

CALL UNSHOW TO DISPLAY THE 'J'TH FRAME (MAKE IT VISIBLE), AND THEN
CALL UNSHOW TO MAKE IT INVISIBLE. SINCE THIS IS DONE AT RAPID RATE,
THE SQUARE WILL APPEAR TO BE DYNAMICALLY SCALED, ROTATED, AND
TRANSLATED.

CALL UNSHOW (FRAME(J))

CALL UNSHOW (FRAME(J))

CONTINUE

INDICATE END OF ALL GRAPHIC ACTIVITY AND TERMINATE PROGRAM.

CALL UEND
STOP
END

EXAMPLE XlI-4

Xi-9

CHARACTER FRAMEWS¢CE)
DATA ME/IAI‘ Ial' Icl' lDI‘ IEI' IFI' Icl' IHI' I:l/
CALL USTART
CALL UPSET C/LIBRARY’.1.)
CALL UOUTLN
DOl Iwi, 8
X = 12,8 » FLOATCID
CALL UFRAME CFRAMECI))
CALL UMOVE ¢X,X)>
CALL UPSET C’*ROTATE’., XD
CALL USFT C/RELATIVE?S
CALL UPLYSN ¢@.,8.,4.,FLOATCID)
CALL USET ¢’ABSOLUTE’S
CALL UFREND CFRAMECIY)
CALL UNSHOW CFRAMECIY)
i CONTINUE
DO2I=i, 82
J = MODCCI=1),8) + |
CALL USHOW CFRAMECJD)D
CALL UNSHOW

CFRAMECJYY)
2 CONTINUE

CALL UEND
STOP
END

Xi-10

UAIN

UALPHA

UAOUT

UAPEND

UARC

UASPCT

UAVERG

UAXIS

UBAR

UBELL

UCALL

UCHART

UCLOSE

UCOLOR

APPENDIX A
ALPHABETICAL LISTING OF GCS SUBROUTINES

Accepts one character from the terminal
CALL UAIN (ICHAR)
Insures that terminal is in alphanumeric mode
CALL UALPHA
Outputs a character at current pen position subject to margining
CALL UAOUT (ICHAR)
Adds GCS string terminator to character string
CALL UAPEND (COUNT,DATAIN,DATOUT)
Draws an arc from current pen position
CALL UARC (X,Y,ANGLE)
Forces the display dimensions to satisfy the specified aspect ratio
CALL UASPCT (RATIO)
Fits a moving average curve to time series data
CALL UAVERG (ARRAY,POINTS,FCST,PERIOD)
Draws axes with appropriate numeric and alphanumeric labeling
CALL UAXIS (XMIN,XMAX,YMIN,YMAX)
Draws a bar chart with appropriate numeric and alphameric labels
CALL UBAR (ARRAY,PTS,LABELS,SIZE)
Sounds the audible alarm at the terminal
CALL UBELL
Invokes a graphic data structure in two dimensions
CALL UCALL (NAME,DX,DY,SX,SY,ANGLE)
Draws a grouped bar chart for multi-valued data
CALL UCHART (ARRAY,GROUPS,BARS,LABELS,YMAXL)
Closes the current open frame/segment
CALL UCLOSE (SEGNAM)

Defines entries in a program modifiable table of colors

UCONIC

UCONTR

UCOSYS

UCOUNT

UCRCLE

UDAREA

UDELAL

UDELET

UDIMEN

uboIT

UDRAW

UDRIN

UEND

UERASE

CALL UCOLOR (CLRIDX, CLRCNT, CLRNAM, CLRVAL)
Draws generalized conic sections

CALL UCONIC {X,Y,P.E,THETA1,THETA2)
Draws contours on regular array of data

CALL UCONTR (Z,X,Y,AFX,FY,CURVE,FN)
Creates a user coordinate plotting system

CALL UCOSYS (DX,DY,SX,SY,ANGLE)
Counts number of characters in character string
CALL UCOUNT (DATA,COUNT)
Draws a circle whose center location and radius are specified
CALL UCRCLE (X,Y,RADIUS)

Sets the device display area associated with user window

CALL UDAREA (XMIN,XMAX,YMIN,YMAX)
Deletes all currently defined frame/segments

CALL UDELAL
Deletes a currently-defined frame/segment
CALL UDELET (SEGNAM)
Adjusts physical boundaries of output device (alters aspect ratio)
CALL UDIMEN (XMAX,YMAX)
Perform various page layout functions
CALL UDOIT (ACTION)
Draws solid line vector
CALL UDRAW (X)Y)
Performs the input requested graphic operation and returns request
CALL UDRIN (X,Y,ICHAR)
Terminates graphic operations and positions pen in home position
CALL UEND

Erases the screen or requests a clean plotting surface

CALL UERASE

A-2

UERROR

UFLUSH

UFONT

UFORMT

UFRAME

UFREND

UGRIN

UHDCPY

UHISTO

UHOME

UIMAGE

UINPUT

UINVOK

ULINE

ULINFT

Returns listing of source records with GCS error commentary
CALL UERROR (ERLAST,TOTAL)
Insures that visual display reflects all net program graphical output
CALL UFLUSH
Changes the text font
CALL UFONT (NAMFNT)
Configures the display surface to the requested format
CALL UFORMT (FORMAT)
Defines the start of a named set of graphical commands
CALL UFRAME (NAME)
Defines the end of a named set of graphical commands
CALL UFREND (NAME)
Gets coordinates and a character from terminal and returns them
CALL UGRIN (X,Y,ICHAR)
Generate a hardcopy

CALL UHDCPY

Draws a histogram with appropriate numeric and alphanumeric labels

CALL UHISTO (ARRAY,PTS,BARS)
Moves beam to home position

CALL UHOME

Applies general 2-D image transformations to ‘retained’ frames/segments

CALL UIMAGE (X,Y,SX,SY,R,SEGNAM)
Inputs alphanumeric information from the current position
CALL INPUT (DATA,COUNT,FLAG,OPTION)
Invokes a GCS structure at the current position
CALL UINVOK (NAME)
Connects two arrays of points with current line option
CALL ULINE (X,Y,PTS)
Determines linear least squares fit to points provided

CALL ULINFT (X,Y,XN,S,Y1)

A-3

ULOOK

ULSTSQ
UMARGN
UMENU
UMODFY
UMOVE
PNSAVE

UNSHOW

UNSVPN
UNSVTR
UOPEN

UORIGN
UOUTLN

UPAUSE

Establish portion display area onto which corresponding portion of cur-
rent virtual space viewport will be mapped

CALL ULOOK (XMIN,XMAX,YMIN,YMAX)
Calculates least squares polynomial fit to points provided
CALL ULSTSQ (X,Y,XN,COEFF)

Sets the left and right, top and bottom alphanumeric window boundaries
CALL UMARGN (XLEFT,XRIGHT,YBOTTM,YTOP)

Menu board generating routine

CALL UMENU (POINTS,LABELS,CHOICE)
Modifies setting of frame/segment attributes

CALL UMODFY (SEGNAM,NAMAT, ATVALU)
Moves the pen to position specified by input arguments
CALL UMOVE (X,Y)
Restores all variables of the graphic status area
CALL UNSAVE (ARRAY)

Causes the named frame/segment of graphical information to be made
invisible

CALL UNSHOW (NAME)
Restores all pen related variables in the graphics status area
CALL UNSVPN (ARRAY)
Restores cocrdinate system related variables in the graphics status area
CALL UNSVTR (ARRAY)
Opens a frame/segment
CALL UOPEN (SEGNAM,SEGTYP)
Creates a user coordinate system at the current beam/pen position
CALL UORIGN
Draws a box around the user's display area
CALL UOUTLN
Suspends execution until one character is entered from keyboard

CALL UPAUSE

A-4

UPEN

UPEN1

UPIE

UPLACE

UPLOT

UPLOT1

UPLYGN

UPOINT

UPOST

UPRINT

UPRNT1

UPSET

UQUERY

UREAD

Draws a line from current pen position to given coordinates
CALL UPEN (X,)Y)
Sets one ‘USET’ option for this call only before executing pen movement
CALL UPEN1 (X,Y,OPTION)
Draws a pie chart with appropriate numeric and alphameric labels
CALL UPIE (ARRAY,PTS,LABELS,SIZE)

Applies 2-D translation image transformation to ‘retained’ frames/seg-
ments

CALL UPLACE (X,Y,SEGNAM)
General purpose multi-curve plotting routine
CALL UPLOT (X,Y,CURVES,PARRAY,OPTION)
Plots a single curve
CALL UPLOT1 (X,Y,PTS)
Draws a regular polygon
CALL UPLYGN (X,Y,PTSIN,RADIUS)

Defines point which, together with two end points of a given line, defines
the plane for the terminator and tic line

CALL UPOINT (X,Y,2)
Insures that only defined, visible frame/segments are displayed
CALL UPOST
Prints information in hardware or software characters
CALL UPRINT (X,Y,INPUT)

Allows alphanumeric output at current position with specified option

CALL UPRNT1 (DATA,OPTION)
Changes setting in the GSA which requires a parameter value to be set

CALL UPSET (OPTION,VALUE)

Obtains current value of specified variable in GSA

CALL UQUERY (OPTION,VALUE)
Allows alphanumeric input from the graphic terminal

CALL UREAD (X,Y,DATA,COUNT FLAG)

URECT

UREPRO

URESET

UROTAT

USAREA

USAVE

USAXIS

USCALE

USCATR

USHOW

USPLIN

USTART

USTRCT

Draws a rectangle
CALL URECT (X,Y)
Reproduce contents of psuedo-display file on current display device
CALL UREPRO (FILENR, STATUS)
Resets GSA variables to default conditions
CALL URESET
Creates a user coordinate system at current position rotated as specified
CALL ROTAT (ANGLE)

Changes device boundaries to maintain a one to one aspect ratio with the
current window boundaries

CALL USAREA

Saves all the variables of the Graphics Status Area
CALL USAVE (ARRAY)

Draws a single axis in any of three coordinates

CALL USAXIS (AXIS,XSTART,YSTART,ZSTART,DIST)

Creates a user coordinate system at current position with specified scale
CALL USCALE (SX,8Y)

Draws a scatter plot

CALL USCATR (X,Y,PTS)

Sets a graphics status area variable to a given value

CALL USET (OPTION)

Causes the named frame/segment of graphical information to be made
visible

CALL USHOW (NAME)
Fits a cubic spline interpolatory curve to the input data
CALL USPLIN (X,Y,PTS,RETX,RETY,RETPTS)
Initializes the graphics status area
CALL USTART
Defines the start of a graphic data structure

CALL USTRCT (NAME)

A-6

UsSTuD

USVPN

USVTR

UTAXIS

UTERM

UTILTY

UTSFIT

UVIEW

UVWPLN

UWAIT

UWHERE

UWINDO

UWLOOK

UWRITE

Returns limits of two dimensional virtual and display surfaces
CALL USTUD (ARRAY)
Saves all pen-related variables of the graphics status area
CALL USVPN (ARRAY)
Saves coordinate system related variables in the graphics status area
CALL USVTR (ARRAY)
Draws a time series axis with appropriate alphameric and numeric labels
CALL UTAXIS (BEGIN,PERIOD,YMIN,YMAX)
Defines the end of a graphic data structure
CALL UTERM (NAME)
Performs data structure utility functions
CALL UTILTY (OPTION,VALUE)
Fits an exponentially smoothed curve to time series data
CALL UTSFIT (ARRAY,POINTS,FCST,ALPHA)

Defines position of viewer in relation to environment, and the direction of
view.

CALL UVIEW (XVIEW,YVIEW,ZVIEW, XSITE,YSITE ZSITE)
Defines the location of the view (projection) plane
CALL UVWPLN (DISTAN)
Waits a given number of seconds
CALL UWAIT (SECONDS)
Returns the coordinates of the current pen position in user units
CALL UWHERE (X.,Y)
Sets the virtual window boundaries
CALL UWINDO (XMIN,XMAX,YMIN,YMAX)

Adjusts both virtual window, and user display area to cover given portion
of virtual space

CALL UWLOOK (XMIN,YMAX,YMIN,YMAX)
Prints information, then restores pen to location on input

CALL UWRITE (X,Y,DATA)

A-7

UWRIT1

UZWNDO

U3AXIS

U3CALL

U3CSYS

U3DRAW

U3GRIN

U3IMAG

U3LINE

U3MOVE

U3PEN

U3PEN1

U3PLACE

U3PLOT

Allows alphanumeric output at current position under one option
CALL UWRIT1 (DATA,OPTION)
Sets the hither/yon window boundaries for Z-clipping
CALL UZWNDO (ZMIN,ZMAX)
Creates a set of axes in 3 space
CALL UBAXIS (XMIN,XMAX,YMIN,YMAX,ZMIN,ZMAX)
Invokes an existing graphics data structure in 3 space.
CALL U3CALL (X,Y,Z,SX,SY,SZ,RX,RY,RZNAME)
Creates a new coordinate system in 3 space
CALL U3CSYS (X,Y,Z,SX,SY,SZRX,RY,R2)
Draws a solid line in 3-D space
CALL UBDRAWI(X,Y,2)
Gets 3-D coordinates and a character from terminal and returns them
CALL U3GRIN (X,Y,ZICHAR)
Applies general 3-D image transformations to ‘retained’ frames/segments
CALL UBIMAG (X,Y,Z,SX,SY,SZ,RX,RY,RZ,SEGNAM)
Connects 3-D arrays of points (X,Y,Z) with current line option
CALL UBLINE (X,Y,ZPTS)
Moves pen invisibly in 3-D space
CALL UBMOVE (X,Y.2)
Draws a line from current pen position to given 3-D coordinates
CALL UBPEN (X,Y,2)

Sets one ‘USET' option for this call only before executing 3-D pen move-
ment

CALL U3PEN1(X,Y,Z,OPTION)

Applies 3-D translation image transformation to ‘retained’ frames/seg-
ments

CALL U3PLAC(X,Y,Z, SEGNAM)
Draws a general purpose graph in 3-D space

CALL UBPLOT (X,Y,Z,CURVES,PTS,0PTS)

A-8

U3PRNT

U3ROTA

U3SCAL

U3STUD

U3WHER

U3WNDO

U3WRIT

Displays textual data at pen position in 3-D space
CALL U3PRNT (X,Y,Z,DATA)

Creats a user coordinate system in three space at current pen position,
rotated as specified

CALL U3ROTA (RX,RY,RZ)

Creates a user coordinate system in three space at current per position,
scaled as specified

CALL U3SCAL (SX,8Y,S2)
Gives current setting of the 3-D user display area and windows
CALL U3STUD (ARRAY)
Returns current pen position in current units in 3-D space
CALL U3WHER (X,Y.,2)
Sets the virtual 3-D window boundaries
CALL U3WNDO (XMIN,XMAX,YMIN,YMAX ZMIN,ZMAX)
Displays textual information in 3-D space, returns pen to original position

CALL UBWRIT (X,Y,Z,DATA)

A-9

APPENDIX B
USET OPTIONS

TABLE 1

USET OPTIONS MOST FREQUENTLY USED

TO REQUEST ABSOLUTE COORDINATE PLOTTING (DEFAULT):
USET (‘ABSOLUTE) USET (‘ABSO’)
USET (‘ABSb’)

TO REQUEST RELATIVE OR INCREMENTAL COORDINATE PLOTTING:
USET (‘RELATIVE’) USET (‘RELA’)

TO REQUEST RECTANGULAR COORDINATES (DEFAULT):
USET (‘(RECTANGULAR') USET (‘RECT’)

TO REQUEST POLAR COORDINATES:
USET (‘POLAR)) USET (‘POLA)

TO REQUEST ANGULAR VALUES IN DEGREES (DEFAULT):
USET (‘DEGREES’) USET (‘DEGR)

TO REQUEST ANGULAR VALUES IN RADIANS:

USET (‘RADIANS’) USET (‘RADI’)

TO REQUEST PLOTTING IN VIRTUAL SPACE (DEFAULT):
USET (‘VIRTUAL) USET (‘VIRT)

TO REQUEST PLOTTING IN DEVICE SPACE:
USET (‘DEVICE’) USET (‘DEVI’)

TO REQUEST DEVICE SPACE PLOTTING UNITS IN INCHES (DEFAULT):
USET (‘INCHES’) USET (INCH)

TO REQUEST DEVICE SPACE PLOTTING IN RASTER UNITS:
USET (‘RASTERUNITS)) USET (‘RAST)

TO REQUEST DEVICE SPACE PLOTTING IN FONT (CHARACTER SPACE) UNITS:
USET (‘FONTUNITS’) USET (‘FONT’)

TO REQUEST DEVICE SPACE PLOTTING IN PERCENT UNITS:
USET (‘PERCENTUNITS’) USET (‘PERC’)

TO REQUEST PLOTTING OF A VISIBLE LINE (DEFAULT):
USET (‘LINE)

TO REQUEST PLOTTING OF INVISIBLE LINES:

USET (‘MOVE’)
USET (‘NOLINE’) USET (‘NOLI’)
USET (‘NObLINE’) USET (‘NObL)

TO REQUEST PLOTTING OF LINES WITH ARROW TERMINATORS:
USET (‘(ARROW) USET (‘ARRO’)

TO REQUEST PLOTTING OF DASHED LINES:

USET (‘DASH))

TO REQUEST PLOTTING OF TIC LINES:

USET (‘TICLINE") USET (‘TICL)

TO REQUEST PLOTTING OF LINES WITH ONLY ENDPOINTS VISIBLE:

USET (‘POINT’) USET (‘POIN’)

TO REQUEST PLOTTING OF LINES COMPOSED OF CHARACTERS:

USET ((ALPHANUMERICLINES’) USET (‘ALPH’)

TO REQUEST PLOTTING OF INVISIBLE LINES WITH CHARACTERS AT THEIR END-
POINTS:

USET (‘CHARACTER") USET (‘CHAR)
TO REQUEST CHARACTER OUTPUT IN THE FORM OF HARDWARE CHARACTERS
(DEFAULT):

USET (‘(HARDWARE’) USET (‘HARD’)

B-2

TO REQUEST CHARACTER OUTPUT IN THE FORM OF SOFTWARE CHARACTERS:
USET (‘SOFTWARE’) USET (‘SOFT’)

TO REQUEST UPRINT/UWRITE OUTPUT IN TEXT FORMAT (DEFAULT):

USET (‘TEXT)

TO REQUEST UPRINT/UWRITE OUTPUT IN INTEGER FORMAT:
USET ('INTEGER’) USET (INTE")

TO REQUEST UPRINT/UWRITE OUTPUT IN REAL FORMAT:
USET (‘REALNUMBER’) USET (‘REAL")

TO REQUEST PLOTTING WITH RESPECT TO THE SYSTEM AXIS (DEFAULT):
USET (‘SYSTEM’) USET (‘SYST)

TO REQUEST PLOTTING WITH RESPECT TO THE USER AXIS:
USET (‘USERAXIS’) USET (‘USER)

TO REQUEST A LINE TYPE/CHARACTER TERMINATOR COMBINATION:
USET (‘X$bb’) USET (*X$)
Where

$ IS THE DESIRED CHARACTER TERMINATOR
AND
X, THE LINE TYPE SPECIFICATION, IS AS FOLLOWS:

ALPHANUMERIC LINE
DASHED LINE

SOLID LINE

NULL OR INVISIBLE LINE
TIC LINE

denotes blank

o-HzZr oxr

B-3

TABLE 2

USET OPTIONS BY ALPHABETICAL ORDER:
(Default Options are in Bold Type)

Option Name

‘AARROW’
‘ABACKARROW'
‘ABEND’ 3D
‘ABORT’ 3D

‘ABShH’
‘ABSOLUTE’
‘ABUTTING'
‘ACENTER’
‘ACHARACTER’
‘ACOORDINATE’

‘ADDITIVE’ *
‘ADOUBLEARROW’
‘ALLDISPLAYS’
‘ALPHANUMERIC’
‘ALTERNATEDISPLAY'

‘ANNUAL'

‘ANULL’

‘APQINT’
‘ARROWLINE’
‘ASYMBOL'
‘AUTOSCALEFE’
‘BACKARROWLINE'
‘BALL’

‘BLACK’

‘BBLUE’

‘BCYAN’
‘BESTFORMAT’
‘BIHOURLY’
‘BLACK’

‘BLUE’
‘BMAGENTA’
‘BRED’

‘BRIGHT’

‘BUILD’ 3D
‘BWHITE'
‘BYELLOW!'
‘CENTIMETERS’
‘CHARACTER’
‘CJUSTIFICATION'
‘COMPRESSED™ 3D
‘CONTINUOUS’
‘COORDINATES’
‘CURSOR’
‘CWINDOWING’ 3D
‘CYAN’
‘CYLINDRICAL’

NOTE: b - is a blank or space

“ - means not implemented

To Request

Alphanumeric lines with arrow terminators
Alphanumeric lines with back arrow terminators
To halt execution when error count exceeds cer-
tain limit

To halt execution when error count exceeds cer-
tain limit

Plotting in an absolute coordinate system
Plotting in an absolute coordinate system
Abutting of display surface pages

To center character output about given location
Alphanumeric lines with character terminators
Alphanumeric lines with ending coordinates indi-
cated

Additive color blending mode

Alphanumeric lines with arrowhead terminators
Routing of graphical output to all devices
Alphanumeric lines with no terminators

Routing of graphical output to first alternate
device

Time series axis scale in yearly intervals
Alphanumeric lines with no terminators
Alphanumeric lines with point terminators

Solid lines with arrow terminators

Alphanumeric lines with character terminators
Automatic scaling for higher level graphing

Solid lines with back arrow terminators

Track ball graphical input

Background color to be black

Background color to be blue

Background color to be cyan

Numeric label output in best possible format
Time series axis scale in two hour intervals
Switch to pen color black

Switch to pen color blue

Background color to be magenta

Background color to be red

Highest possible intensity for output

Structure building

Background color to be white

Background color to be yellow

Device space coordinates are in centimeters

Null or invisible lines with character terminators
Alphanumeric center justification

Data structure editing option

Curved lines be interpreted as one pen operation
UPRINT/UWRITE output in (X,Y) coordinate format
Graphic cursor as graphic input device

Circular windowing

Switch to pen color cyan

Coordinates are to be of the form (R, THETA,2),

B-4

‘DAILY’

‘DARROW’

‘DASH’

‘DATE’

‘DBACKARROW’
‘DCHARACTER’
‘DCOORDINATES'
‘DDOUBLEARROW’
‘DEFERRED’ *
‘DEGREES’

‘DESENSITIZE’ |
‘DETECTABLE’

‘DEVICE’

‘DIGITIZER’

‘DIMb’

‘DIMENSIONLINE’

‘DISPLAY’

‘DNULL'

‘DOUBLEARROW’

‘DPOINT’

‘DSYMBOL'’

‘DUMP’

‘ECHO'™ |
‘EDGEAXIS’
‘ERROROUTPUT’

‘EXECUTFE’ 3D

‘EXPANDED™ 3D
‘EXTENDEDMENU"* 1,3D
‘EXTRALARGE’

‘FAST'

‘FITLINEAR’

‘FITPOLYNOMIAL'

‘FITSPLINE’

‘FNUMBERMODE’

‘FONTUNITS’

‘FULLSCALFE’

‘FUNCTIONKEYS'

‘GAPPED’

‘GFORMAT’

‘GOTHIC’

‘GRADS’ 3D
‘GREEN’

‘GRIDAXIS’

‘HARDWAREFONT’
‘HIGHLIGHTED’
‘HITHER/YONDCLIPPING’
‘HORIZONTAL' 3D
‘HOURLY'

‘IFORMAT’
‘IGNORE’ 3D

NOTE: b - is a blank or space

* - means not implemented

where R is the number of units of radius in the X,Y
plane, THETA is the number of angular units
around the Y axis, and Z is the number of units
along the Z axis

Time series axis scale in daily intervals

Dashed lines with arrow terminators

Dashed lines with null terminations

Time series axis scale in date series interval
Dashed lines with arrow terminators

Dashed lines with character terminators

Dashed lines with endpoint coordinates indicated
Dashed lines with double arrow terminators
Deferred error output until UEND is called
Angular information be interpreted in degrees
Disabling of pick sensitivity

Enabling of pick sensitivity

Plotting in device space

Digitizer is graphics input device

Lowest possible intensity for output

Solid lines with arrow terminators

Plotting in device space

Dashed lines with no terminators

Solid lines with double arrow terminators
Dashed lines with point terminators

Dashed lines with character terminators

To select dump option

Echo alphanumeric input option

X and Y axis labels at edge of graph

Immediate error output

Execution of data structure commands as they are
built

Data structure editing option

Extended menuing option

Extra large character size

Fast blink rate

Fit linear function to plotted lines

Fit least squares polynomial to plotted points

Fit cubic spline curve to plotted points

Frame identifiers provided as numbers

To indicate device space plotting in font units
Full scaling for higher level graphing

Function key is graphics input device

Alternate light and dark line output

Numeric label output in FORTRAN real (E or F) for-
mat

Gothic character font (standard GCS font)
Angular units to be measured in grads

Switch to pen color green

Grid axes for higher level graphing

Output of hardware generated characters
Highlighted segments

Z axis clipping

Alphanumeric output to be printed horizontally
Time series axis scale in twenty-four hourly inter-
vals

Numeric label output in integer format

Ignore duplicate studies on merge file

B-5

‘INCHES’
‘INCREMENTAL’
‘INTEGER’
‘INVISIBLE’
‘ITALICS’
‘JOYSTICK’
‘KEYBOARD'
‘LARGE’
‘LARROW'
‘LBACKARROW’
‘LCHARACTER’
‘LCOORDINATES’
‘LDOUBLEARROW’
‘LEFT'

‘LETTER’
‘LIGHTPEN’
‘LINE’
‘LJUSTIFICATION’
‘LNULL’
‘LOGARITHMIC’
‘LOGOBJECT

‘LOGORIGINALUNITS’
‘LOGSYSTEM’

‘LOGUSER’

‘LOGXAXIS'
‘LOGYAXIS’
‘LOWERCASE’
‘LPOINT’
‘LSYMBOL’
‘MAGENTA’
‘MEDIUM’
‘MESSAGEDEVICE'
‘MILS’
‘MINUTELY’
‘MONTHLY’
‘MOUSE’

‘MOVE’
‘MULTIPLE’
‘NARROW’
‘NBACKARROW'
‘NCHARACTER’
‘NCOORDINATES’
‘NDOUBLEARROW’
‘NEGATIVESIDE’
‘NEWSCALFE’
‘NNULL’

3D

3D

3D

3D

3D

3D

3D

NOTE: b - is a blank or space
* - means not implemented

Device space coordinates in inches

Plotting in an incremental coordinate system
UPRINT/UWRITE output in integer format
Invisible construction of frames and segments
Italic character format

Joystick as graphic input device

Keyboard as (pseudo) graphic input device
Large character size

Solid lines with arrow terminators

Solid lines with back arrow terminators

Solid lines with character terminators

Solid lines with endpoint coordinates indicated
Solid lines with double arrow terminators

Left handed coordinate system

UPRINT/UWRITE output in text format

Light pen as graphic input device

Solid lines with null terminators

Left justification of alphanumeric strings

Solid lines with null terminators

Applies logarithmic transforms to all components
Logarithmic transforms are to be applied before
any other transformations. (In this mode, log
transforms may be applied to angle or radius com-
ponents of ‘CYLINDRICAL’, ‘POLAR’, or ‘SPHERI-
CAL’ coordinates)

Application of log scaling before conversion to
rectangular

Logarithmic to be applied after conversion to
‘SYSTEM’ coordinates {in this mode, the
logarithmic coordinate system axes.)

Logarithmic transforms are to be applied after
conversion to ‘ABSOLUTE'. ‘RECTANGULAR/,
‘USER’ coordinates but before conversion to
‘SYSTEM’ coordinates. {In this mode, the
logarithmic scaling will be applied along the cur-
rent ‘USER’ coordinate system axes.)

Base ten log X axis drawing

Base ten log Y axis drawing

Lower case to be ‘TEXT' case

Solid lines with point terminators

Solid lines with character terminators

Switch to pen color magenta

Medium hardware character size

Alphanumeric 1/0 routed to a message device
Angular units to be measured in mils

Time series axis scale in minute intervals

Time series axis scale in monthly intervals
Analog mouse as graphic input device

Invisible lines with null terminators

Multiple data structure invocation

Invisible lines with arrow terminators

Invisible lines with back arrow terminators
Invisible lines with character terminators
Invisible lines with double arrow terminators
Invisible lines with double arrow terminators
Labels will be to the left or below the axes

New scale for higher level graphing

Invisible lines with null terminators

B-6

‘NObLINE'

‘NOABORT’ 3D
‘NOAXES’

‘NOBLINK’

‘NOBUILD’ 3D
‘NOCENTER’

‘NODUMP’ 3D
‘NOECHO’ 1,3D
‘NOEXECUTE’ 3D
‘NOFIT’

‘NOHIGHLIGHTING’
‘NOITALICS’

‘NOLINE’

‘NOLOGARITHMS’ 3D
‘NONUNIFORM' 3D
‘NOMARK'

‘NONABUTTING'
‘NONRETAINEDSEGMENTS'

‘NONUNIFORM’

‘NOORIGIN' 3D
‘NOREPEAT’ 3D
‘NOREWIND'
‘NORMALINTENSITY’
‘NOSCRIPT’ 3D
‘NOSIGNIFICANTZEROES'
‘NOSUPERSCRIPT’ 3D
‘NOTRAIL'’ 3D
‘NOWINDOWING' 3D
‘NOXLABEL’

‘NOXREPEAT’ 3D
‘NOYLABEL’

‘NOYREPEAT’ 3D
‘NOZCLIPPING’

‘NOZLABELS’ 3D
‘NOZREPEAT’ 3D
‘NODbLINE’

‘NObMARK'

‘NPOINT'

‘NSYMBOL'

‘OLDSCALE’

‘ORIGIN’ 3D
‘ORTHOGRAPHIC’ 3D
‘OWNSCALE’
‘PARALLELLABELS’ 3D
‘PENAXIS’

NOTE: b - is a blank or space
* - means not implemented

Invisible lines with null terminators

Do not terminate if error count exceeds specified
limit

No axes be drawn for higher level graphing

No blinking to occur

No structure building

Text output starts at given point

No dump performed

No echoing of alphanumeric input

No execution of data structure commands as they
are built

No curve fitting for higher level graphics

No segment highlighting

No slanting of software characters

Invisible lines with null terminators

No logorithmic transform application

High level plotting option

Invisible marks with null terminators

No abutting of display surface pages

Create segments in non-retained form
Nonuniform scaling of higher level grading

No origin to be forced for ‘AUTOSCALE’ or
‘FULLSCALE’ scaling options

No coordinate repeating for high level plotting

No rewind of structure save files

Normal intensity for output

To disable any superscripting or subscripting of
text output

Suppression of display of significant zeros

Same as ‘NOSCRIPTING’

Record of which GCS routines are invoked is not
listed

Disable GCS windowing routine

No labels are to be drawn for graphing

To indicate that a component is provided for every
X value in every curve in higher level graphing
No Y labeling for graphing

To indicate that a component is provided for every
Y value in every curve in higher level graphing
No hither/yon clipping

To indicate that no Z labels are to be drawn for
higher level graphing

To indicate that a component is provided for every
Z value in every curve in higher level graphing
Invisible line with null terminator

Line type

Invisible lines with point terminators

Invisible lines with character terminators

Old scale to be used for higher level graphing

An origin to be forced for ‘AUTOSCALE’' and
‘FULLSCALE’ scaling options

To specify orthographic projection in which the
projection is parallel from all points

Own scale option for higher level graphing

To specify that the main axis of the numeric labels
will be parallel to the axis

Axis intersection at current position for graphing

B-7

‘PENDOWN’

Solid lines with null terminators

‘PENORIGIN’ 3D To force the current pen position to be included in
the axis range.

‘PENUP’ Invisible lines with null terminators

‘PERIODIC’ Time series axis scale in accounting period inter-
vals

‘PERCENTUNITS’ Device space coordinates specified in percent
units

‘PERPENDICULARLABELS’ 3D To specify that the major axis the numeric labels
will be perpendicular to the axis

‘PERSPECTIVFE’ 3D To specity perspective projection in which line
length diminishes as the distances from the view-
ing position become greater

‘PIRADIANS’ 3D Angular information be interpreted in Pi radians

‘PLAINAXIS’ Plain axes to be drawn for high level graphing

‘PLOTDEVICFE’ Alphanumeric 1/0 to be directed to the plotting
device

‘POINT’ Invisible lines with point terminators

‘POLAR’ Plotting in polar (RHO, THETA) units

‘POSITIVESIDE’ 3D Labels will be above or to the right of the axis

‘PRIMARYDEVICE’ Routing of graphical output to primary graphics
device

‘QUARTERLY’ Time series axis scale in quarter year intervals

‘RADIANS’ Angular information be interpreted in radians

‘RASTERUNITS' To indicate device space coordinates are
specified as is in raster units

‘REAL’ UPRINT/UWRITE output in real number format

‘RECTANGULAR'’ Plotting on the user’s reference axis

‘REDb’ Switch to pen color red

‘REFERENCE’ Plotting on the user's reference axis

‘REFRESHEDSEGMENT'’ Segments to be retained

‘RELb’ Plotting in a relative coordinate system:

‘RELATIVE’ Plotting in a relative coordinate system

‘REPLACE’ 3D Data structure building option

‘RETAINEDSEGMENTS' Segments to be retained structures from merge
file

‘REWIND’ 3D Data structure file handling command

‘RIGHTHAND’ 3D Right handed coordinate system

‘RJUSTIFICATION' Right justification of alphanumeric character
string

‘RWINDOWING’ 3D Rectangular windowing

‘SECONDLY’ Time series axis scale in second intervals

‘SECRET’ Security classification secret

‘SEGMENTED’ Curved lines be interpreted as multiple pen opera-
tions

‘SEMIANNUAL’ Time series axis scale in semi annual intervals

‘SENSITIZE’ 3D Make graphic segments visible

‘SIGNIFICANTZEROES'

‘SIMULATED HARDWARE

Display of significant zero
Qutput of simulated hardware characters

CHARACTERS’

‘SINGLE’ 3D Data structure invocation option

‘SITEPOINT’ 3D Viewpoint distance to be measured from the view
site

‘SLOWBLINK’ Slow blink rate

‘SMALL’ Use smallest hardware character size

‘SOFTWAREFONT’ Output of software generated characters

‘SONICPEN’ I Sonic pen is graphics input device

‘SPECIFIC’ To specity particular device units instead of per-

cent units

NOTE: b - is a blank or space

* - means not implemented
B-8

‘SPHERICAL'

‘STANDARDMENU’
‘SUBSCRIPT'

‘SUPERSCRIPT’

‘SUPPRESSERRORS'
‘SYMBOL'
‘SYSTEMAXIS’
‘TABLET’
‘TARROW’
‘TBACKARROW!
‘TCHARACTER’
‘TCOORDINATES’
‘TDOUBLEARROW’
‘TEXT’
‘SUBTRACTIVE™
‘TICAXES'
‘TICLINE’

‘TNULL’
‘THINLINES'
‘TOPSECRET'
‘TPOINT’

‘TRAIL'

‘TSYMBOL'
‘TWELVEHOUR’
‘TWENTYFOURHOUR’

‘UNCLASSIFIED’
‘UNDETECTABLE’
‘UNIFORM™
‘UNINTERRUPTED’
‘UPPERCASE’
‘USER’

‘VERTICAL'
‘VIEWPOINT’

‘VIRTUAL’
‘VISIBLFE’
‘WEEKLY’
'WHITE'
‘WIDELINES’
‘WORKINGAXIS’

1,3D
3D

3D

3D

3D

3D
3D

‘WORLDCOORDINATESYSTEM’

‘XABSOLUTE’

‘XALPHANUMERIC’
XAXIS'
‘XBOTHLABELS'

3D

NOTE: b - is a blank or space

* - means not implemented

Coordinates are of the form (R,THETA,PH!) where
R is the number of units of radius, THETA is the
number of angular units around the Z axis, and PHI
is the number of angular units around the X axis
Menuing option

To specify that the output will be lowered from the
specified line of text

To specify that the output will be raised from the
specified line of text.

Error output be suppressed

Invisible lines with character terminators

Plotting on the system axis

Analog tablet as graphic input device

Tic lines with arrow terminators

Tic lines with back arrow terminators

Tic lines with character terminators

Tic lines with endpoint coordinates indicated

Tic lines with double arrow terminators
UPRINT/UWRITE output in text format
Subtractive color blending mode

Tic axes to be drawn for higher level graphing
Tic lines with null terminators

Tic lines with null terminators

Line width to be thin

Security Classification Top Secret

Tic lines with point terminators

To indicate by an identification number which
GCS routine is involved.

Tic lines with character terminators

Time series axis scale in twelve hour intervals
Time series axis scale in twenty four-hour inter-
vals

Security classification unclassified

Disabling pick sensitivity

High level graphing system

Non-gapped line output

Upper case to be ‘TEXT' case

Plotting on a user defined axis system
Alphanumeric output to be spaced vertically
View port distance to be measured from the view
point

Plotting in virtual space

Visible framed output

Time series axis scale in weekly intervals

Switch to pen color white

Line width to be wide

Plotting on the user’'s working (temporary axis)
Coordinate system to be the default axis system
To specify the X coordinates with respect to the
origin of the current coordinate system for indi-
cated components. Y and Z components are to be
specified with respect to the current beam/pen
position

The X axis will have an alphanumeric label

The X axis be drawn for high level graphing

The X axis will have both alphanumeric and
numeric labels

B-9

‘XCONSTANT'

‘XEDGEYZEROAXIS'
‘XLOGARITHMIC’
‘XNEGATIVE’
‘XNUMERIC’
‘XPOSITIVE'
‘XRELATIVE’

‘XREPEAT’

‘XYAXES'
‘XYABSOLUTE’

‘XYCOORDINATES'

‘XYLOGARITHMIC'
‘XYPLANE’

‘XYRELATIVE'

‘XYVIEW’
‘XYZAXES'

‘XYZCOORDINATES'
XYZLOG'
‘XYZVIEW’

‘XYZb'

‘XYCOORDINATES'
‘XZABSOLUTE’

‘XZAXES'

‘XZEROYEDGEAXIS'
‘XZLOGARITHMIC’

‘XZPLANE'
‘XZRELATIVE’

XZVIEW’
‘XZYb'

3D

3D

3D
3D

3D

3D

3D
3D

3D

3D

3D
3D

3D
3D

3D

3D

3D

3D
3D

3D
3D

NOTE: b - is a blank or space

* - means not implemented

To indicate that the X component does not vary
during the drawing of any curve in higher level
graphics

The X axis at edge of graph

Logarithmic X and linear Y plotting

Negative X axis represents up in 3D graphics

An X axis numeric label

Positive X axis represents up in 3D graphics

To specify the X coordinates with respect to the
current beam/pen position. Y and Z components
are to be specified with respect to the origin of the
current coordinate system

To indicate that one set of X valves is provided
which will be reused for every curve in higher level
graphing

The X and Y axes be drawn for high level graphing
To specify the X and Y coordinates with respect to
the origin of the current coordinate system for the
indicated components. Z components are to be
specified with respect to the current beam/pen
position

To specify that the data printed by UPRINT/
UWRITE is in the form of an (X,Y) coordinate pair.
Logarthmic X and Y plotting, linear Z plotting
Labels are to be drawn in the plane formed by the
X and Y axes

To specify the X and Y components with respect to
the current beam/pen position. Z components are
to be specified with respect to the origin of the cur-
rent coordinate system

To view plane formed by X and Y axes

All three axes are to be drawn for higher level
graphing

Text printed by USPRNT/U3WRIT to be in form of
(X,Y,2) triplet

Applies logamithmic transforms to all three com-
ponents

To view all three axes

To set the rotation application order as indicated
UPRINT/UWRITE output in (X,Y) coordinate format
To specify the X and Z coordinates with respect to
the origin of the current coordinate system for the
indicated components. Y components are to be
specified with respect to the current beam posi-
tion

The X and Z axes are to be drawn for higher level
graphing

The X axis adjacent to boundary of display area
Applies Logarithmic transformation to X and Z
components

Label plane to be plane formed by X and Z axis
To specify the X and Z components with respect to
the current beam/pen position. Z components are
to be specified with respect to the origin of the cur-
rent coordinate system

To view the plane formed by the X and Z axes
To set the rotation application order as indicated

‘YABSOLUTE’

‘YALPHANUMERIC'
‘YAXIS'
‘YBOTHLABELS'
‘YCONSTANT’

‘YEARLY"
‘YEDGEXZEROAXIS'
‘YELLOW’
‘YLOGARITHMIC’
‘YNEGATIVE’
‘YNUMERIC'
‘YPOSITIVE'
‘YRELATIVE'

‘YREPEAT'

‘YXZb'
‘YZABSOLUTFE’

‘YZAXES'
‘'YZPLANE'
‘'YZEROXEDGEAXIS'
‘YZLOGARITHMIC’

‘YZRELATIVE'

‘YZVIEW'
‘YZXb'
‘ZABSOLUTE’

‘ZALPHANUMERIC’

‘ZAXIS’
‘ZBOTHLABELS’

‘ZCLIP’
‘ZCONSTANT'

‘ZEROAXES'

3D

3D

3D

3D
3D

3D

3D
3D

3D
3D
3D
3D

3D
3D
3D

3D

3D
3D

3D
3D

NOTE: b - is a blank or space

* - means not implemented

Y coordinates are specified with respect to the
origin of the current coordinate system for the
indicated units. X and Z components are specified
with respect to the current beam/pen position

Y axis alphabetic label

The Y axis to be drawn for high level graphing

Y axis having alphabetic and numeric labels

To indicate that the ¥ component does not vary
during the drawing of any curve

Time series axis scale in yearly intervals

The Y axis at edge of graph

Switch to pen color yellow

Logarithmic Y plotting

Negative Y direction represents up in 3D graphics
Y axis numeric label

Positive Y direction represents up in 3D graphics
Y coordinates are specified with respect to the
current beam/pen position for the indicated com-
ponents X and Z components are to be specified
with respect to the origin of the current coordinate
system

To indicate that one set of Y valves is provided
which will be reused for every curve in higher level
graphing

To set the rotation application order as indicated
Y and Z coordinates are specified with respect to
the origin of the current coordinate system for the
indicated under X components are specified with
respect to the current beam/pen position

The Y and Z axes to be drawn for higher level
graphing

Label plane to be plane formed by Y and Z axes
The Y axis adjacent to boundary of display area
Applies logarithmic transformations to Y and Z
components

Y and Z coordinates to be specified with respect to
the current beam/pen position for the Y and Z
components, and the X component to be specified
with respect to the current beam/pen position for
the Y and Z components, and the X component to
be specified with respect to the origin of the cur-
rent coordinate system

To view the plane formed by the Y and Z axes
To set the rotation application order as specified
Z coordinates to be specified with respect to the
origin of the current coordinate system for the
indicated component. X and Y components are to
be specified with respect to the current beam/pen
position

Alphanumeric labels to be drawn for higher level
drawing

Z axis is to be drawn for higher level graphing
Both numeric and alphanumeric labels to be
drawn for higher level drawing

Clip in Z direction

To indicate that the Z component does not vary
during the drawing of any curve

X and Y axes adjacent to boundary of display area

B-11

‘ZLOGARITHMIC'
‘ZNEGATIVE'

‘ZNUMERIC’
‘ZPOSITIVE’
‘ZRELATIVE’

‘ZREPEAT’

‘ZXYD'

‘ZYXb'

‘12HOUR’

‘13WEEK’
‘2DCOORDINATES’

‘24HOUR’
‘BDCOORDINATE’

3D

3D

3D

3D

3D

3D
3D

3D

3D

NOTE: b - is a blank or space

* means not implemented

Applies logarithmic transform to Z component
Negative Z axis represents up direction in 3D

graphics

Numeric Z labels to be drawn for high level graph-
ing

Positive Z axis represents up direction in 3D
graphics

Z coordinates are to be specified with respect to
the current beam/pen position. X and Y compo-
nents are to be specified with respect to the origin
of the current coordinate system '

To indicate that one set of Z values is provided
which will be reused for every curve in higher level
graphing

To set the rotation application order as indicated
To set the rotation application order as indicated
Twelve hour time axis

Thirteen week time axis

To specify A coordinate terminator in which two
components are listed. (This option is indepen-
dent of the text coordinate options of ‘XYCOORDI-
NATES’ and ‘XYZCOORDINATES’)

Twenty four time axis

To specify a coordinate terminator in which all
three components are listed. (This option is inde-
pendent of the text coordinate option of ‘XYCOOR-
DINATES' and ‘XYZCOORDINATES’)

B-12

Option Name

‘ANGLE OF TEXT'

‘ATTENT!ON QUEUE SIZE™

‘ATTITUDE'

‘BACKGROUND COLOR’

‘BASE OF LOGARITHMS'

‘BRIGHTNESS'

‘CHARACTER’

‘COLOR’

‘COPY DELAY’

‘DISTANCE’

*means not implemented

APPENDIX C
UPSET OPTIONS

Value

Is an angular value which specifies the angle of
the text string in relation of the current X axis.
Default value is Q.

An integer indicating the number of words pro-
vided in the attention queue. Default is O.

Is an angular value which specifies the orienta-
tion of the up direction axis with the sides of the
window. Default value is 0. Meaning that the up
direction is parallel whth the left and right win-
dow boundaries and pointing towards the top of
the window.

Is an integer which specifies the color index
within the color table for colored backgrounds.
Values 0-7 are predefined to represent black,
white, red, green, yellow, blue, magenta, and
cyan, respectively. Default color is black or
none.

Is a positive value which specifies the base of
the logarithms used to perform logarithmic scal-
ing or the character string 1HE, denoting the
base of the Naperean logarithms. Default base
is 10. This option sets the specified base along
each coordinate component.

Is a value between 0 and 100. percent indicat-
ing the position in the range of possible line
intensity settings from dimmest to brightest.
Default brightness is 60%.

Is a Hollerith character which becomes the cur-
rent system character. The default system
character is a star or asterisk (*).

Is an integer which specifies the color index
within the color table. Values 0-7 are pre-
defined to represent black, white, red, green,
yellow, blue, magenta, and cyan, respectively.
Default color is device-dependent.

Is a value which indicates the number of sec-
onds of delay required during generation of a
hard copy. Default value is device-dependent
and is preset to the value required by the
selected device.

Is a value measured from the current view plane
distance base specifying the position of the
view (projection) plane. The default is O.
measured from the view site.

E=1

‘FNT FILE’

‘FONT NAME™

‘GREYSCALE’

‘GRID SPECIFICATION’

‘HORIZONTAL SIZE’

‘INPUT FILE’

‘LABELbROTATION’

‘LIBRARY FILE’

‘LOWER’

‘MARKER INDEX’

‘ORIENTATION’

‘OUTPUT FILE’

‘POLYNOMIAL DEGREE’

‘PRECISION’

*means not implemented

Is a Fortran file number representing the file
containing the font descriptors. Default is zero
indicating no font file specified.

Is a Hollerith string indicating the desired
character font. Default is ‘GCS' which is the
most efficient font.

Is a value indicating a particular grey level for
terminals which support multiple grey scales
rather than colors.

Is a value containing a dash specification to be
used when generating grid axes. Default is 0.
which indicates a solid line should be used.

Indicates the width of a software character
position in current user units. Default is 5 vir-
tual units.

Is a Fortran file number indicating which file will
be used to obtain graphics input. The default is
set to the appropriate computer-system depen-
dent file.

Is the number of angular units the axes |baels
are to be rotated around the axes.

Is a Fortran file number indicating which file
should be used by the GCS structure and seg-
mentation facilities as a random work file,
Default is 0. indicating no file has been pro-
vided.

Is a Hollerith character which will be used by
GCS as the indication to shift to lower case.
Default character is ‘>,

Is an integer value selecting a marker/symbol.
Default marker symbol is 0. indicating a point.

Is an angular value indicating the display orien-
tation of GCS created software symbols and
figures such as software characters, polygons,
and rectangles. Default orientation is 0.

Is a Fortran file number indicating which file will
be used for sending graphics output to the dis-
play device. The default is set to the appropri-
ate computer system dependent file.

Specifies the degree of the polynomial to be
created in calculating a least squares fit
through a collection of points. Default value is
5.

Specifies the number of significant digits to
appear when displaying real numbers. Default
value is 4.

C-2

‘READFILE’

‘ROTATION’
‘SCALEFACTOR’

‘SCRIPTLEVEL’

‘SETDASH’

‘SIZE’

‘SLANTANGLE’

‘SPAN ANGLE'

‘SPECIFICATION UNITS'

‘SPEED’

‘START ANGLE'

‘STRUCTURE TABLE SIZE’

‘SUBSCRIPT CHARACTER'

‘SUPERSCRIPT CHARACTER'

*means not implemented

Is a Fortran file number indicating which file will
be used to obtain non-graphic input. The
default is set to the appropriate computer
system dependent file.

Same as ‘ORIENTATION".

Specifies a scale to be applied to GCS-created
geometric figures such as polygons and rec-
tangles.

Is an integer value indicating the scripting level
to be set for textual output. Default value is 1.

Specifies the characteristics of the dashed
lines to be plotted by UPEN. Default value is 56.

Is a positive integer value which sets hardware
character sizes. Values of 1 through 4 corres-
pond to USET options ‘SMALL’, ‘MEDIUM’
‘LARGE’, and '‘EXTRA LARGE’ respectively.
Default value is 1 for ‘SMALL' characters.

Is an angular value indicating the amount of
slant from the vertical for italicized software
characters. Default value is approximately 18
degrees.

Is an anguiar value indicating the portion of a
circle to be occupied by the pie chart. Default
value is 360 degrees.

Is a positive value indicating the number of
specification units contained in device space
for all directions. Default value is 1000.

Specifies the speed of the communication line
in characters per second. Default value is
system dependent.

Is an angular value indicating the starting poSsi-
tion of the first wedge of the pie chart. Default
value is O.

Is an integer value indicating the number of
words in the user provided structure table.
Default value is 100

Is a Hollerith character which will be used to
decrease the scripting level by 1. Default
subscript character is ‘the display code is a
pound sign’.

Is a Hollerith character which will be used to
increase the scripting level by 1. Default
superscript character is ‘the display code is an
underline sign’.

C-3

‘SZMARKER’

‘TABHORIZONTAL’

‘TABVERTICAL’

‘TERMINATOR’

‘TICINTERVAL'

TICLENGTH’

‘TICMINUS’

‘TICPLUS’

‘TICX’

‘TICY'

‘TICZ'

‘UPPER'’

‘VERTICAL SIZE’

‘WIDTH’

‘WRITE FILE'

‘XBASE OF LOGS’

‘XLABEL’

*means not implemented

Is a value in current device units which
specifies the size of software generated
markers. Default value is device-dependent.

Is-an array of 10 elements containing 10 tab
positions in current device units. Default value
has all tab stops set to zero.

Isan array of 10 elements containing 10 vertical
tab positions in current device units. Default
value has all tab stops set to zero.

Is a Hollerith character which will be used as
the GCS string terminator character. Default
character is a backslash.

Specifies the distance in current user units bet-
ween tic marks of a UPEN created tic line.
Default value is 10.

Specifies in current units the size of that portion
of a tic mark which lies on the clockwise side of
the tic line. Default value is .05 inches.

Specifies in current units the size of that portion
of a tic mark which lies onthe clockwise side of
the tic line. Default value is .05 inches.

Specifies the distance between tic marks or
grid lines along X axes. Default value is O.
indicating that a ‘nice’ number should be
chosen.

Is the same as 'TICX' for Y axes.
Is the same as ‘TICX' for Z axes

Is a Hollerith character which will be used by
GCS as the indication to shfit to upper case.
Default character is ‘<.

Indicate the height of a software character posi-
tion in current user units. Default value is seven
virtual units.

Is a value in current units of the width of a line.
Default value is 0. indicating a thin line.

Is a Fortrar file number indicating which file will
be used to generate non-graphic output. The
default is set to the appropriate computer
system dependent file.

Is a positive value which specifies the base for
logarithmic scaling along the X component.
Default value is 10.

Specifies the alphanumeric label to be dis-
played along X axes. Default value is ‘X .

C-4

‘XPERCENT'

‘XROTATION’

‘XSCALE'

‘XSIZE'

‘XSPECIFICATION UNITS'

‘'YBASE OF LOGS'

‘YBASE OF LOGS'

‘YLABEL'

‘YPERCENT'

‘YROTATION'

‘YSCALE'

‘YSIZE’

‘YSPECIFICATION UNITS'

‘ZBASE OF LOGS'

*means not implemented

Is a value specifying the portion of the width of a
software character position to be occupied by a
character. Default value is .65 indicating 65% of
the width.

Is an angular value indicating the amount of
rotation around the X axis for UINVOK structure
invocations. Default value is O.

Is the scale factor to be applied along the X axis
for UNIVOK structure invocations. Default value
is 1.

Is the size of hardware or simulaied hardware
character positions in current device units.
Default value is device=dependent and corres-
ponds to ‘SMALL" hardware character size.

Is a positive value indicating the number of X
specification units in device space. Default
value is 1000.

Is a positive value indicating the number of X
specification units in device space. Defaulit
value is 1000.

Is a positive value which specifies the base for
logarithmic scaling along the Y component.
Default value is 10.

Specifies the alphanumeric label to be dis-
played along the Y axis. Default value is ‘'Y '

Is a value specifying the portion of the height of
a software character position to be occupied by
a character. Default value is .65 indicating 65%
of the height.

Is an angular value indicating the amount of
rotation around the Y axis for UNIVOK structure
invocations. Default value is 0.

Is the scale factor to be applied along the Y axis
for UNIVOK structure invocations. Default value
is 1.

Is the size of hardware or simulated hardware
character positions in current device units.
Default value is device-dependent and corres-
ponds to ‘SMALL' hardware character size.

Is a positive value indicating the number of Y
specification units in device space. Default
value is 1000.

Is a positive value which specifies the base for
logarithmic scaling along the Z component.
Default value is 10.

‘ZLABEL’

‘ZROTATION'

‘ZSCALFE’

*means not implemented

Specifies the alphanumeric label to be dis-
played along the Z axis. Default value is ‘Z .

Is an angular value indicating the amount of
rotation around the Z axis for UINVOK structure
invocations. Default value is O.

Is the scale factor to be applied along the Z axis

for UINVOK structure invocations. Default value
is 1.

C-6

APPENDIX D
GCS DEFAULT CONDITIONS

This appendix addresses those options which are present in the Graphics Status Area
as default options. After a call to Subroutine USTART, the Graphics Compatibility
System is set to the default conditions, as indicated. The default options can be divided
into two groups: Basic Plotting Options and High Level Plotting Options.

. Default Basic Plotting Options

Plotting is done in ‘RECTANGULAR’ and ‘ABSOLUTE’ coordinates on the ‘SYSTEM’
coordinate axis. The ‘USER’ coordinate axes are identical to the system axis. Plotting is
done in ‘VIRTUAL' space with a virtual window whose limits are from 0.0 to 100.0in the X
direction, and from 0.0 to 100.0 in the Y direction. The virtual window is mapped into a
display area which is the iargest square area on the device display surface. The right
hand edge of the square corresponds to the right edge of the display surface, and the top
edge of the square corresponds to the top edge of the display surface.

Character output in GCS will be, by default, in ‘HARDWARE' character format, of type
‘GOTHICG’ and of ‘MEDIUM' size. If 'SOFTWARE' characters are requested via USET then
the default horizontal size is five (5.0) virtual units, and the default vertical size is seven
(7 0) virtual units.

By default, angular units for angular specifications are in ‘DEGREES’. |f the user
switches to ‘DEVICE’ space, then all length or distance units (i.e. rectangular coordi-
nates) are in terms of INCHES’'. The default alphanumeric margins are the boundaries of
the plotting surface. For alphanumeric I/0 through GCS (i.e. from UPRINT or UREAD),
the data will be assumed to be in ‘TEXT' mode. The alphanumeric output defaults to the
‘PLOT’ device if possible, and any graphic output will go to all devices in a cluster.
Graphic input is from the primary input device, the number of digits of precision for
numeric output is four (4); and GCS detected errors are signalled as they occur.

A line which is drawn by a subroutine in GCS is considered to consist of two parts; a line
type and a line terminator. The line type may be solid (visible), ticked, null (invisible),
dashed, or alphanumeric. The line may be terminated by an arrow, a back arrow, double
arrows, a character, a point, a symbol, a set of coordinate values, or nothing at all. The
default line type in GCS is ‘SOLID’ with ‘NULL’ termintors (‘LNULL'). If ‘TICLINES’ are
requested via USET option, then the default tic interval is ten (10.0} virtual units. It is the
user's responsibility to insure that the tic interval is appropriate if he switches to
‘DEVICE’ space or alters the default virtual window setting or the default display area
setting. If ‘DASHLINES' are requested, then the default dash specification (56.) will
result in a dashed line which is alternately light and dark, in icrements of approximately
0.075 inches. |f a '"CHARACTER' line terminator is requested but no character is
specified by way of Subroutine UPSET, then the character asterisk (*) is used. Similarly,
the asterisk is used to compose the line type if ‘ALPHANUMERIC’ lines are requested.

For 3D operations, the viewing environment is set up to simulate a 2D only environment.
The view point is located at (0,,0.,150.), the view site is at (0.,0.,0.) and the view plane is
located at the view site. The system coordinate system is considered to be ‘RIGHT-
HANDED’ with the ‘ZPOSITIVEAXIS' representing up. Note that since the view is down
the Z axis, the up direction degenerates to ‘YPOSITIVE'. The Z axis clipping planes are
150. (hither plane) and 1.0E+ 30 (yon plane) with ‘NOZCLIPPING".

D-1

Il. Default High Level Plotting Options

For each call to UPLOT or UPLOT1, the data values which represent the curves are
examined, and a ‘NEWSCALE’ is created. UAXIS will be invoked to create ‘XYAXES'.
The data values will be examined, appropriate limits for the established. Numeric labels
only will be output for the X axis and the Y axis. The axes will be positioned at the ‘EDGE’
of the plot. Both the X axis and the Y axis will be drawn in a linear coordinate space. The
axis lines will be ticked. If a time series axis is plotted by invoking Subroutine UTAXIS,
the default interval for the X axis will be ‘DATE’. No curves will be tit to the data values,
but if ‘FITPOLYNOMIAL' is requested, then subroutine UPLOT will attempt to fit a fifth

degree poynomial to the data.

. Summary

COORDINATE SPACE:
COORDINATE TYPE:
COORDINATE SYSTEM:
COORDINATE AXIS:

VIRTUAL WINDOW:

DISPLAY AREA:

DEVICE SPACE UNITS:
ANGULAR UNITS:

LINE TYPE:

SYSTEM CHARACTER:
TIC INTERVAL:

DASH SPECIFICATION:

CHARACTER TYPE:
CHARACTER FONT:
CHARACTER SIZE:

SOFTWARE CHARACTER SIZE:

INPUT/OQUTPUT FORMAT:
ALPHANUMERIC MARGINS:
OUTPUT ROUTE:

OUTPUT DISTRIBUTION:
GRAPHIC INPUT:

DIGITS OF PRECISION:
ERROR HANDLING:

AXIS SCALING:
AXIS LABELING:

AXIS POSITIONING:
AXIS TYPE:

AXIS EXISTENCE:
AXIS COORDINATES:

TIME SERIES AXIS SCALE:

‘VIRTUAL'
‘ABSOLUTE’
‘RECTANGULAR’
‘SYSTEM'

0.0 TO 100.0 X DIRECTION
0.0 TO 100.0 Y DIRECTION

Largest square area which is right-up on the dis-
play surface of the device.

‘INCHES'
‘DEGREES’

‘LINE’ or ‘LNULL'’
asterisk (*)

10.0 virtual units
56.

‘HARDWARE’

‘GOTHIC’

‘MEDIUM’

5.0 virtual units horizontal
7.0 virtual units vertical

‘TEXT’

Device display surface boundaries.
‘PLOTDEVICE’

‘ALLDEVICES'

Primary input device

4
‘IMMEDIATE OUTPUT’

‘AUTOSCALE’
‘XNUMERICLABEL’
‘YNUMERICLABEL’
‘EDGEAXIS’
‘TICAXIS'
‘XYAXES'
‘NOLOGARITHMS'

‘DATE’

D-2

Coordinate Mode

‘ABSOLUTFE’
‘RELATIVE'
‘XABSOLUTE®
‘XRELATIVE'
‘XYABSOLUTE’

Coordinate Type

‘RECTANGULAR’
‘POLAR’
‘LOGARITHIMC’
‘'YLOGARITHMIC'

Coordinate Space

‘VIRTUAL’
‘DEVICE’

Device Space Units

‘INCHES’
‘CENTIMETERS’
‘FONTUNITS’
‘PERCENTUNITS'
‘RASTERUNITS!

Angular Units

‘DEGREES’
‘RADIANS’
‘PIRADIANS’

Frame Composition

‘INVISIBLFE’
‘VISIBLE'

Line Type

‘LINE’

‘DASH’

‘POINT’

‘TICLINE’
‘CHARACTER’
‘SYMBOL'
‘ALPHANUMERIC'

APPENDIX E

USET OPTIONS BY CLASS

INCREMENTAL’
‘XYRELATIVE'
‘XZABSOLUTE’
‘XZRELATIVE’
‘LEFTHANDED’

‘CYLINDRICAL'
‘SPHERICAL'’
‘XLOGARITHMIC!
‘XYLOGARITHMIC'

‘SPECIFIC
‘DISPLAY"

‘GRADS'
‘MILS’

‘LNULL’

‘DNULL'

‘NPOI'

‘TNULL'
‘BACKARROWLINE'
‘COORDINATELINE!
‘NCHA'

‘DOUBLEARROWLINE’

‘RIGHTHANDED'
‘YABSOLUTE'
‘YRELATIVE®
‘YZABSOLUTE'
‘YZRELATIVE'

‘LOGOBJECT
‘LOGSYSTEM’
‘LOGUSER’
‘NOLOGARITHMS'

‘NOLINE’
‘NOMARK'
‘NNULL'
‘LARROW!

‘LDOUBLEARROW:"

‘MOVFE’
‘ARROWLINE'

‘ZABSOLUTE'
‘ZRELATIVE'

‘XYZLOGARITHMIC'
‘XZLOGARITHMIC!
‘YZLOGARITHMIC
*ZLOGARITHMIC!

‘LBACKARROW'’
‘LCOORDINATE'
‘NO LINE’

‘NO MARK'®
‘DIMENSIONLINE’
‘NSYMBOL'
‘ANULL'

Lines that are drawn by GCS are composed on a line type and a line terminator. A large
number of line types and terminators are possible. The specification is composed by

E-1

combining the first letter of the line type with the name of the terminator. The following
tables illustrate the possible linetypes and terminators:

LINE TYPE FIRST LETTER

LINE

DASH
ALPHANUMERIC
NULL (INVISIBLE)
TICLINE

—_Z>»>0r

Line Terminators

NULL (NO TERMINATORS)
CHARACTER

SYMBOL

COORDINATE

POINT

ARROW

BACKARROW
DOUBLEARROW

Line Repeatability

‘UNINTERRUPTED’
‘GAPPED’

Curve Approximation

‘CONTINUOUS’
‘SEGMENTED'

Biink Rate

‘NOBLINK’

‘FASTBLINK’

‘SLOWBLINK’

Coior

‘WHITE’ ‘BLUE’
‘BLACK’ ‘RED’
‘GREEN’ ‘MAGENTA’
‘CYAN’ ‘'YELLOW'’
Intensity

‘DIM’
‘BRIGHT’

Coordlinate Axis

‘SYSTEMAXIS’
‘USERAXIS’

Coordinate Axis Composition

‘WORKINGAXIS’
‘REFERENCEAXIS’

E-2

Character Format

‘GOTHIC’
‘UPPERCASE’
ITALIC’
‘LOWERCASE’

Character Size

‘SMALL’
‘MEDIUM’
‘LARGE’
‘EXTRALARGE’

Device Routing

‘PLOTDEVICFE’
‘MESSAGEDEVICE'

Device Selection
‘ALLDEVICES’
‘PRIMARYDEVICE’
‘ALTERNATEDEVICE’

Graphic Input

‘CURSORS’ ‘NOECHO’
‘KEYBOARD' ‘ECHO’
‘LIGHTPEN’ ‘ORMODE’
‘JOYSTICK’ ‘ANDMODE’
‘BALL ‘PROCEED’
‘MOUSE’ ‘WAIT’

Character Type

‘HARDWARE’
‘SOFTWARE’

Error Conditions

‘ERROR OUTPUT’ ‘DUMP’
‘SUPPRESSERRORS’ ‘ABEND’
‘DEFERERRORS’ ‘ABORT’

Structure Definition

‘BUILD’
‘NOBUILD’

Structure Buiiding

‘EXECUTFE’
‘NOEXECUTE’

Structure Fiie Manipuiation

‘APPEND’ ‘REPLACE’

‘NOABORT
‘NODUMP’
‘NOTRAIL'

‘TRAIL’

‘IGNORE’ ‘REWIND’
‘MULTIPLE’ ‘SINGLE’

Structure Editing

‘COMPRESSED’
‘EXPANDED’

Axis Scaling
‘AUTOSCALFE’
‘FULLSCALE’
‘OWNSCALE’

Axis Scaie Existence

‘NEWSCALFE’
‘OLDSCALFE’

Segment Pickability

‘DESENSITIZE’
‘SENSITIZE’

Axis Existence

‘XYAXES’ ‘NOAXES’
‘XAXIS’ ‘XYZAXES’
‘YAXIS' ‘XZAXES'
‘YZAXES' ‘ZAXIS’

Axis Positioning

‘EDGEAXIS’
‘ZEROAXIS’
‘PENAXIS’

‘XEDGEYZEROAXIS'
‘XZEROYEDGEAXIS’

Numeric Labeis

‘BESTFORMAT’
‘EFORMAT’
‘FORMAT’
‘GFORMAT’

Labei Positioning
‘NEGATIVESIDFE’

‘PARALLELLABELS’

‘XYPLANE’
‘YPLANE'

Axis Type

‘NOLOGARITHMS’
‘XLOGARITHM'

‘YEDGEXZEROAXIS’
‘YZEROXEDGEAXIS’

‘PERPENDICULARLABELS’
‘POSITIVESIDE’
‘XZPLANFE’

‘XYLOGARITHM’
‘XZLOGARITHM’

E-4

‘YLOGARITHM'
‘ZLOGARITHM’
‘XYZLOGARITHM’
‘LOGARITHMS’

X Axis Labels

‘XNUMERIC’
‘XALPHANUMERIC’
‘XBOTHLABELS’
‘NOXLABEL'

Y Axis Labels

‘YNUMERIC’
‘YALPHANUMERIC'
‘NOYLABEL’
‘YBOTHLABELS’

Z Axis Label

‘ZNUMERIC’
‘ZALPHANUMERIC'
‘NOZLABEL’
‘ZBOTHLABELS"

Axis Type
‘TICAXIS’

‘PLAINAXIS’
‘GRIDAXIS’

‘YZLOGARITHM’

Three Dimensional Viewporting

‘SITEPOINT’
‘VIEWPOINT

Windowing

‘CWINDOWING'
‘NOWINDOWING'
‘RWINDOWINE'

Text Output

‘NOCENTER’
‘ACENTER’
‘NOSCRIPT’
‘XYZCOORDINATES’
‘XYCOORDINATES’
‘2DCOORDINATES’

Menuing Option

‘STANDARDMENU’
‘EXTENDEDMENU'

Origin Inclusion

‘SUBSCRIPT'
‘NOSUBSCRIPTING'
‘SUPERSCRIPT
‘INTEGER’

‘TEXT’
‘3DCOORDINATES'

E-5

‘HORIZONTAL'
‘UPPERCASE’
‘VERTICAL'
‘REAL’

‘NOORIGIN’

‘ORIGIN

‘PENORIGIN

Device Space Clipping

‘NOZCLIPPING’
‘ZCLIP

High-Level Plotting Optlon

‘NONUNIFORM’
'UNIFORM'

Coordinate Repeat Option

‘NOREPEAT’ ‘NOZREPEAT'
‘NOXREPEAT' ‘XCONSTANT’
‘NOYREPEAT’

‘XREPEAT' '
Transformation Type ‘

‘PERSPECTIVE’
‘ORTHOGONAL'

Axls Orlentation

‘YNEGATIVE'
‘YPOSITIVE’

‘XNEGATIVE’
‘XPOSITIVE

Three Dimension Viewing

‘XKYVIEW’
‘XYZVIEW’

‘XZVIEW’
‘YZVIEW

Rotatlon Application Order

‘AXYZ' ‘Yzx'
‘XZY' ‘ZXY’
‘YXZ' ZYX'

TIime Axis Scaling

12Hour ‘YEARS'
13Week ‘WEEKDAYS’
24Hour ‘DAYS’

‘YCONSTANT' ‘ZREPEAT'
‘YREPEAT'

‘ZCONSTANT'

‘ZNEGATIVE'

‘ZPOSITIVE’

‘DATFE’ ‘SECONDS’
‘MINUTES' ‘QUARTERS’
‘HOURS’ ‘PERIODIC’

E-6

Type
USET
USET
USET

USET
USET
UPSET
UPSET
UPSET
USET
USET
UPSET
USET
UPSET

USET

USET
UPSET
UPSET
USET

UPSET

USET
USET
USET

UPSET
USET
USET
USET
USET
UPSET

USET

APPENDIX F

UQUERY OPTIONS

Query Name
‘ABUTTING’
'ACENTERING’

‘ADJUSTMENT’

‘ANGULARUNITS'
‘ANGLE OF TEXT'
‘ASPECTRATIO 3D
‘ATTENTION QUEUE SIZE'
‘BACKGROUND COLOR’
‘BLENDMODE"
‘BLINKRATE’
‘BRIGHTNESS’

‘BUILD’ 3D
‘CHARACTER'

‘CLIPPING'

‘COLOR’
‘COPY DELAY’
‘CSPACING’
'CURVE’

‘DASH’

‘DESCRIPTION’
‘DETECTABILITY"

‘DIMENSION’ 3D

‘DISTANCE' 3D

‘EDIT’ 3D
‘ERRORMODE'
'EXECUTE’ 3D
‘EXISTENCE'

‘FACTOR’

‘FITMODE’

F-1

Returns (Default In Parentheses)
Page abutting mode (NONABUTTING')
Alphanumeric centering (NOCENTERING’)
Axis view adjustment option (bléhe gxi;s plotted on
view port or viewed from current view point)
(‘'XYZVIEW’) KL
Current user angular units (DEGREES')
Current angle of text out})ut'(O‘.) -
Display Surface aspect ratio
Attention‘queue size (100.)
Background color index (Black=0.‘)
Color Biending mode ('SUBTRACTIVE’)
Blink rate (‘NOBLINK’) il
Display intensity (60%)
Structure build mode flag (‘NOBUILD')

Current system character as Hollerith string (*)

Device space clipping flag ‘NOCLIP', ‘CLIP’ or
‘INVERTED")

Current color index (device dependent)

Copy delay time {device dependent)

Character spacing mode (HORIZONTAL')

Current curve approximation mode (‘CONTINUOUS')

Numeric value corresponding to current dashline
specification (56.)

Current axis option (‘TICAXES')
Detectability of new segments (DESENSITIZED’)

2D or 3D coordinate terminator switch
(‘2DCOORDINATES')

Distance from viewport to screen plane (150.)
Data structure edit mode (COMPRESS’)

Error presentation (ERROR)

Structure building visability (EXECUTE')

Current axis existence option (‘XYZAXES')

Scale factor for GCS created software symbols (1.)

Curve fitting mode for autoplotting (NOFITTING’)

USET
UPSET
UPSET
USET

USET
UPSET

UPSET

USET

UPSET

UPSET

UPSET

USET
USET
UPSET
USET
UPSET
UPSET
UPSET

USET
UPSET
USET

USET

USET

USET
USET
USET
USET
USET
USET

USET

'FNAMING MODE'
‘FNTFILE NUMBER™
‘FONT NAME™*

'FORMAT'

'"GAPMODE’
"GREYSCALE'

‘GRID' 3D

‘HANDEDNESS" 3D

‘HARDWARE'

'HORIZONTAL'

'INFILE’

'INPUT’

‘ITALICIZATION'

‘LABELANGLE’

‘LETTERTYPE'

‘LEVEL’ 3D
‘LIBRARY' 3D

‘LIMIT 3D

‘LINEOPTION'
'LOWERCASE'

'LOGARITHMIC’ 3D

‘LOGTIME OF APPLICATION'

'LOGTYPE' 3D
"MAPPINGTYPE’ 3D
'MENUTYPE' 3D
'MERGE' 3D

'MESSAGEDEVICE'

'MODE'
‘NUMERIC' 3D
'ORDER’ 3D

Frame naming mode ((FNAME')
Font file number (0.)
Font name (‘GCS")

Text number format for numeric labelling
('BESTFORMAT)

Gapped line mode (UINTERRUPTED')

Numeric valve indicating current grey level (device
dependent)

Numeric value indicating grid axis type option (0.}

Left or right handed coordinate system
(RIGHTHANDED")

Current hardware character size ('SMALL', device
dependent)

Current horizontal software character position size
(5.)

Graphics input file designation (computer system
dependent)

Graphics input device medium
Italicization mode ('NOITALICS')

Label angle around perpendicular {0.)
Character type (HARDWARE')
Subscript/superscript spacing level {1.)
Data structure library file mode (0.)

Number of errors before automatic stop. 0 means no
limit (0.)

Current line option setting ('LNULL")
Lowercase shift character as Hollerith string (‘>)

Axes selected for logarithmic transform (logarithmic
transform switch) (NOLOGSCALING)

Time of application of logarithmic scaling
(LOGSYSTEM COORDINATES")

Flag indicating when logarithmic scaling performed.
((LOGSYSTEM','LOGUSER’,'LOGOBJECT’)

3D to 2D mapping type ((PERSPECTIVE')

Menu board type (STANDARD’)

Structure merge mode switch ((IGNORE’)
Destination of alphanumeric 170 {PLOTDEVICE')
Current coordinate mode (ABSOLUTE')

Numeric labels parallel or perpendicular to axis
('PARALLEL")

3D coordinate system rotation application order
(‘zyx)

UPSET

USET
UPSET

USET
USET
USET
UPSET
USET

UPSET

USET

UPSET

USET

USET
USET
USET
USET
USET
USET
USET
UPSET
USET
UPSET
UPSET
USET
USET

UPSET

UPSET
UPSET
UPSET
USET

UPSET
UPSET
UPSET

‘ORIENTATION'

‘ORIGIN’

‘OUTFILE’

‘OUTPUTDEVICE'
‘PLANE'

‘PLOTSCALE’
‘POLYNOMIALDEGREE’
‘POSITION’

‘PRECISION’

‘PROJECTION TYPE'

'READ FILE'

‘REPEAT’

‘REWIND’
‘SCALE'

‘SCRIPT'
‘SECURITY LEVEL'
"SENSITIVITY'
‘SIDE'

‘SIZE'

‘SLANT'

‘SPACE'

‘SPAN’

‘START'

‘STOP'
‘STORAGEMODE'

'STRUCTURE LIMIT'

‘SUBSCRIPTCHARACTER'
*SUPERSCRIPTCHARACTER’
‘SYMBOL INDEX'

‘SYSTEM'
‘TABHORIZONTAL'
‘TABVERTICAL’

‘TERMINATOR'

3D

3D

3D

3D

3D

3D

3D

3D

3D

3D

3D

3D

Angular orientation of display of GCS created
symbols (0.)

Forced origin switch for axis scaling ('ORIGIN’)

File number of graphics output file {computer system
dependent)

Graphical output destination device (‘(ALLDEVICES')
Axis label plane (' XYPLANE’)

Scale option 'NEWSCALE’)

Current degree of polynominal fit for curve fitting (5.)
Current axes positioning (EDGEAXES')

Number of digits cf precision to be displayed for real
numbers. (4.)

Type of projection (PERSEPCTIVE')

File designator for non-graphic input (computer
system dependent)

Data structure invocation option (SINGLE' or
‘REPEAT")

Structure file rewind mode (‘(REWIND')

Axis scale option (‘(AUTOSCALE")
Subscript/superscript control (NOSCRIPT')
Control of security banners (UNSECURED')

Light pen sensitivity switch (DESENSITIZE')

Side of axes on which labels will appear (NEGATIVE’)
Hardware character size ((SMALL")

Software character italic slant angle (18. degrees)
Coordinate space ('VIRTUAL')

Angular span for pie charts (360. degrees)

Pie chart starting angle (0.)

Error stopping control (NOABORT')
Segment/Frame retention mode (‘RETAINED’)

Maximum number of structures which can be defined
(100))

Current subscript shift character

Current superscript shift character

Choice of marker (0.)

Current coordinate system (‘SYSTEM')
Location of current horizontal tab stop (10.)
Location of current vertical tab stop (10.)

GCS string termination character

F-3

USET
UPSET
UPSET
UPSET
UPSET
UPSET
UPSET
UPSET
USET ,
USET
USET
USET

USET

UPSET
USET
UPSET
USET
USET
UPSET
USET

UPSET

UPSET

USET
USET
UPSET

USET

UPSET

UPSET

UPSET

USET

UPSET

TEXT
‘TICINTERVAL'
TICLENGTH'
‘TICMINUS
TICPLUS'
TIcX'

TICY'

‘TICZ'

' TIME'

‘TYPE’
‘UNIFORM'
‘UNITS'

‘UPAXIS'

‘UPPERCASE’
'USER’
‘'VERTICAL’
‘VIEWPORT'
'VISIBILITY'
‘WIDTH OF LINES'
'WINDOW'

‘'WRITE FILE'
‘XBASE'

‘XLABEL'
‘XLOGARITHMIC'

‘XPERCENTAGE OF CHARACTER
SPACE'

'XREPETITION MODE'
‘XROTATION'

‘XSCALING’

'XSPECIFICATION UNIT’

‘XSIZE'

‘XTITLE’

3D

3D

3D

3D

3D

Textual I/0 mode (‘TEXT')

Length of UPEN ticintervals (10))
Length of UPEN ticintervals (10.)
Clockwise tic mark size. (0.05)
Counter-clockwise tick mark size (0.05)
X axis tic interval (0.)

Y axis tic interval (0.)

Z axis tic interval (0.)

Time series plotting period (DATES')
Type of coordinates (RECTANGULAR)
High level plotting option (NONUNIFORM)
Device space units (INCHES")

Coordinate system viewport vertical axis
(‘ZPOSITIVE')

Uppercase shift character as Hollirith string (‘<)
User coordinate system switch

Vertical software character position switch
Viewport distance base switch ('SITE’)
Framed/segment creation visibility mode (‘VISIBLE')
Width of lines (0)

Window type (NOWINDOW’)

Non-graphic alphanumeric output file (Computer
system dependent)

Base of log scaling along x-component (real number
or string 'E") (10.)

X axis labelling option (‘XNUMERICLABEL')
X axis linearity option

Portion of horizontal character space occupied by
character (0.65)

X component repetition mode for plotting
('NOXREPEAT')

Rotation factor around X axis for structure invocation
(0)

Scaling factor along X axis for structure invocation

(1)

Number of XSPECIFICATION unts in device space
(1000.)

Horizontal hardware character position size (device
dependent)

X axis alphanumeric label (‘X"

F-4

UPSET

USET
USET

UPSET

USET

UPSET

UPSET

UPSET

UPSET

UPSET
UPSET
USET
USET

USET

UPSET

UPSET

UPSET

UPSET
UPSET

‘YBASE’ 3D

‘YLABEL'
‘YLOGARITHMIC'

‘YPERCENTAGE OF CHARACTER

SPACE’

‘YREPETITION'

‘YROTATION'

‘'YSCALING'

‘YSIZE’

‘YSPECIFICATIONUNITS’

‘YTITLE’

‘ZBASE’ 3D
‘ZCLIP

‘ZLABEL’ 3D

‘ZREPETITION MODFE’

‘ZROTATION’

‘ZSCALING’

‘ZSPECIFICATIONUNITS’

ZTITLE’ 3D

‘ZVALUE’ 3D

Base of log scaling along Y-component (real number
or string ‘E") (10.)

Y axis labelling option (‘YNUMERICLABELS')
Y axis linearity option

Portion of vertical character space occupied by
character (0.65)

Y component repetition made for plotting
('NOYREPEAT)

Rotation factor around Y axis for structure invocation
(0)

Scaling factor along Y axis for structure invocation
(1)

Vertical size for hardware characters (device
dependent)

Number of Y specification units in device space
(1000)

Y axis alphanumeric label

Base of log scaling along Z axis (10.)
Hither/yon clipping mode (‘NOZCLIPPING)
Z axis label option ((ZNUMERICLABELS’)

Z component repetition mode for plotting
(‘NOZREPEAT")

Rotation factor around Z axis for structure invocation
(0)

Scaling factor along Z axis for structure invocation
(1)

Number of Z specification units in device space
(1000)

Z axis title

Numeric default Z-value for 2D coordinates (0.)

F-5

APPENDIX G
GCS ERROR CODES

The following is a list of the currently defined error codes in GCS:

01 —
02 —
03 —

57 —
60 —
61 —
64 —
65 —
66 —
67 —
68 —

Invalid key word specification to USET.

Invalid key word specification to UPSET.

No plot files found.

Invalid option for UPRNT1.

Invalid UDOIT system.

Invalid view port boundaries.

UFORMT — Invalid Display Surface Format.

Invoke font specification.

Invalid UINPUT option.

UMARGN argument list out of order/Boundary specification invalid.
UMARGN boundary outside of physical device boundary.

UWINDO argument list out of order/Boundary specifications invalid.
UDAREA argument list out of order/Boundary specifications invalid.
UDAREA boundary outside of physical device boundary.

UCLIP invalid argument list,

UCLIP boundary overlap error.

UDIMEN maximum boundary specification invalid.

UAXIS argument list XMIN .GT.XMAX and/or YMIN .GT. YMAX.
UDAREA provided to UAXIS too small for requested options.
UPSET — invalid tic interval. Value .LE.zero specified.

UPSET — invalid scale factor. Value must not be equal to zero.
UPSET — invalid software character size. Value must not be equal to zero.
UPSET — invalid digits of precision. Precision must be greater than zero.
UPSET — attempt to set zero or negative scripting — level.

UPSET — Invalid light pen correlation value. Value must be.GT.zero.
UPSET — Invalid transmission speed. Value must be .GT.zero.
UPSET — Invalid Library file code. File codes must be in range 1 to 99.
UPSET — Invalid error limit. Value must be greater than zero.
UPSET — Invalid error limit. Value must be greater than zero.
UFRAME/UFREND frame table full.

Failure to call UFREND for previous occurrence of same frame.
Failure to call UFREND for another named frame.

UFREND called without any frame active.

UFREND call not for currently active frame.

USHOW/UNSHOW called for undefined frame.

USHOW/UNSHOW called while in frame build status.

PLOT — Constant or delta X or Y values illegal for automatic curve fitting.
Insufficient data points for desired fit.

Input data points exceed fit capacity.

Input data out of order or non functional relationship.

Insufficient array space to return fitted results.

Invalid trend adjustment factor.

Invalid polynomial degree for polynomial fit.

Invalid number of previous periods for moving average fit.

Attempt to build a structure in frame mode.

Nested structure call stack overflow.

Attempt to redefine existing structure.

Structure table overflow.

Attempt to activate a structure while another is still active.
Structure termination without active structure.

Structure termination not for current structure.

110
111
112
113
114
115
120
121
122
130
131
132

133 —

140
141
142
143
150

160 —

161
162
164
165
166
167
168
169

Attempt to execute an undefined structure.

Recursive structure build call.

Invalid number of items for UREAD/UINPUT.

Attempted input operation from batch device.

Attempt to create a secondary axis scale of zero.
UAXIS — pen position outside of UDAREA in ‘PENAXES".
Attempt to plot log with window bound .LE. 0.0

Attempt to move to apply log scaling to coordinate whose value is zero.
Log plotting in device space not allowed.

UAXIS — AXIS choice requires 0 to 1 within range of X and/or Y AXIS.
ULINE/U3LINE — Invalid number of points.

UAPEND found zero length string. Terminator placed in first character position.
UWAIT — Negative time period specified.

UQUERY -— Invalid option specification.

UCOLOR — Invalid color index.

UCOLOR — Duplicate color component.

UCOLOR — Duplicate color component.

UCOLOR — Invalid color name.

UCOLOR — Invalid color component value.

UCOLOR — Colinear with line.

UHISTO — Insufficient points.

UHISTO — Invlid number of bars.

UHISTO — Unreasonable window for OWNSCALE.
UHISTO — Insufficient UDAREA for options specified.
Invalid number of points for UPIE.

Invalid data value for UPIE.

Invalid max label size for UPIE.

Insufficient room for UPIE display.

UPIE — ABS(Starting Angle > = ABS (Ending Angle).
UPIE — Too many labels outside of pie.

USCATR — Insufficient points specified.

USCATR — Invalid limits for logarithmic scatter diagram.
USCATR — UDAREA too small for specified options.
UBAR — Invalid number of points.

UBAR — Invalid label size.

UBAR — Invalid data value.

UBAR — Insufficient UDAREA for options specified.
UCHART — Invalid number of points.

UCHART — Invalid label size.

UCHART — Invalid number of bars.

UCHART — UDAREA too small for specified options.
UTAXIS — UDAREA too small for specified options.
UTILTY — Invalid action.

UTILTY — Save structure not found.

UTILTY — Utility operation on structure work file.
UREPRO — Invalid pseudo-device file number.
UREPRO — Invalid pseudo-device file format.

UREPRO — Read error on pseudo-device file.

UREPRO — Invalid pseudo-device command.

UREPRO — End-of-file within pseudo-device command.
UREPRO — Open segment of UREPRO invocation.

190 — UVIEW — Viewpoint specified same as view site.

191
192

UVWPRT — Aperature specified negative or zero in some dimension.
UVWPRT — Viewport behind viewer.

193 — Attempt to draw through viewpoint.
194 — Hither plane behind or at viewpoint.

“U.S. GOVERNMENT PRINTING OFFICE 1980-640-289/39 G | 2

In accordance with letter from DAEN-RDC, DAEN-ASI, dated
22 July 1977, Subject: Facsimile Catalog Cards for .
Laboratory Technical Publications, a facsimile; catalog
card in Library of Congress MARC format is reproduced
below. -t St

Westinghouse Word Processing Center, Pittsburgh.
Primer on computer graphics programming / by Westinghouse
Word Processing Center, Pittsburgh, Pa. Vicksburg, Miss.

U. S. Waterways Experiment Station ; Springfield, Va.
available from National Technical Information Service, 1979.
v, [201] p. : ill. ; 27 cm. (Miscellaneous paper - U. S.

Army Engineer Waterways Experiment Station ; 0-79-4)
Prepared for Office, Chief of Engineers, U. S. Army, Wash-
ington, D. C., under Contract No. DACW39-78-M-2676.

1. Computer graphics. 2.. Computer programming. 3. Graphics
Compatibility System. I. United States. Army. Corps of
Engineers. 1II. Series: United States. Waterways Experiment
Station, Vicksburg, Miss. Miscellaneous paper ; 0-79-4.
TA7.W34m no.0-79-4

Miscellaneous Paper 0-79-1
Miscellaneous Paper 0-79-2
Miscellaneous Paper 0-79-3

Miscellaneous Paper 0-79-4

Miscellaneous Paper 0-79-5

WATERWAYS EXPERIMENT STATION
REPORTS PUBLISHED ON THE
GRAPHICS COMPATIBILITY SYSTEM

Title

Host-Computer Implementation Guidelines for the Three-
Dimensional Graphics Compatibility System (GCS)

Device Implementation Guidelines for the the Three-
Dimensional Graphics Compatibility System (GCS)

Raster Graphics Extensions to the Graphics Compatibility
System (GCS)

Primer on Computer Graphics Programming

Graphics Compatibility System (GCS) Programmer’s
Reference Manual

Date

Mar 1979

Mar 1979

Mar 1979

Oct 1979

Oct 1979

